/ ∆x)
∆x→
0 Пусть х - произвольная точка, лежащая в некоторой окрестности точки Х0 (окрестность точки Х0 - это интервал (а; b), Х0 ∈(а; b)).
Разность х- Х0 называется приращением аргумента:
∆x = х- Х0. Отсюда x = Х0 + ∆x.
Разность f(x)-f(Х0 ) называется приращением функции:
∆f = f(x) - f(x0) или
∆ f = f(x0+∆x) – f(x0).
Отсюда
f (x0 +∆x) = f (x0 ) + ∆ f.
Рис.1
Определение производной
Геометрический смысл приращений ∆х и ∆ f показан на рис.1.
Производной функции y = f(x) в точке x0 называется предел отношения приращения функции ∆f к приращению аргумента ∆x, стремящегося к "нулю“.
Обозначается f ' (x0).
Итак,