руху, і кутовий коефіцієнт дотичної до графіка функції. Існують
і обернені задачі, наприклад про відновлення руху за відомою швидкістю.Приклад. По прямій рухається матеріальна точка, швидкість руху якої в момент часу t задається формулою v=at. Знайдіть закон руху.
Розв҆язання
Нехай s= s( t) – шуканий закон руху. Відомо, що s´( t) = v(t). Отже, для розв҆язування задачі необхідно підібрати функцію s= s( t), похідна якої дорівнює аt. Неважко впевнитися, що s(t) = at²/2, бо s´( t) = (at²/2)´ = a/2 (t²)´ = a/2 · 2t = at.
Слід зазначити, що відповідь правильна, але задача має неповний розв҆язок. Насправді задача має нескінченну множину розв҆язків: будь – яка функція виду s(t) = at²/2 + С, де С – довільна стала, може бути законом руху.
Процес знаходження похідної називають диференціюванням, а обернену операцію, тобто процес знаходження первісної похідної, - інтегруванням.