Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Решение системы линейных уравнений методом Крамера

Содержание

Системы линейных уравнений Уравнение называется линейным, если оно содержит переменные только в первой степени и не содержит произведений переменных.Система m линейных уравнений с n переменными:
Решение системы линейных уравнений методом КрамераЦель работы:-изучить решение систем линейных уравнений Системы линейных уравнений Уравнение называется линейным, если оно содержит переменные только в Числа   называются коэффициентами при переменных, а свободными членами. Совокупность чисел называется В школьном курсе рассматриваются способ подстановки и способ сложения. В курсе высшей Сведения из историиКрамер является одним из создателей линейной алгебры. Одной из самых Габриэль Крамер родился 31 июля 1704 года в Женеве (Швейцария) в семье В 18 лет он успешно защитил диссертацию. Через 2 года Крамер выставил Учёный много путешествовал по Европе, перенимая опыт у знаменитых математиков своего времени Талантливый учёный написал множество статей на самые разные темы: геометрия, история, математика, В 1740-е гг. Иоганн Бернулли поручает Крамеру подготовить к печати сборник своих Теорема Крамера. Если определитель системы отличен от нуля, то система линейных уравнений Дана система Формулы Крамера …………. Заменяя столбец с коэффициентами соответствующей переменной свободными членами: Решение системы двух линейных уравнений с двумя неизвестными методом Крамера           Ответ: 1) система линейных уравнений имеет единственное решение(система совместна и определённа)Условия:При решении системы 2) система линейных уравнений имеет бесчисленное множество решений(система совместна и неопределённа)Условия:т.е. коэффициенты 3) система линейных уравнений решений не имеет(система несовместна)Условия:Система называется несовместной, если у Решение системы трех линейных уравнений с тремя двумя неизвестными методом КрамераРешение. Находим определители системы: Ответ: (1; 0; -1) . Решите системы:
Слайды презентации

Слайд 2 Системы линейных уравнений
Уравнение называется линейным, если оно

Системы линейных уравнений Уравнение называется линейным, если оно содержит переменные только

содержит переменные только в первой степени и не содержит

произведений переменных.

Система m линейных уравнений с n переменными:



Слайд 3 Числа

 
называются коэффициентами при переменных, а

свободными

Числа   называются коэффициентами при переменных, а свободными членами. Совокупность чисел

членами.
Совокупность чисел
называется решением системы линейных уравнений, если

при подстановке их вместо переменных во все уравнения они обращаются в верные равенства.

Слайд 4 В школьном курсе рассматриваются способ подстановки и
способ

В школьном курсе рассматриваются способ подстановки и способ сложения. В курсе

сложения.

В курсе высшей математике решают методом Крамера ,методом

Гаусса и с помощью обратной матрицы.

Рассмотрим решение систем линейных уравнений методом Крамера


Слайд 5 Сведения из истории
Крамер является одним из создателей линейной

Сведения из историиКрамер является одним из создателей линейной алгебры. Одной из

алгебры. Одной из самых известных его работ является «Введение

в анализ алгебраических кривых», опубликованный на французском языке в 1750 году. В ней Крамер строит систему линейных уравнений и решает её с помощью алгоритма, названного позже его именем – метод Крамера.

Слайд 6 Габриэль Крамер родился 31 июля 1704 года в

Габриэль Крамер родился 31 июля 1704 года в Женеве (Швейцария) в

Женеве (Швейцария) в семье врача. Уже в детстве он

опережал своих сверстников в интеллектуальном развитии и демонстрировал завидные способности в области математики.


Слайд 7 В 18 лет он успешно защитил диссертацию. Через

В 18 лет он успешно защитил диссертацию. Через 2 года Крамер

2 года Крамер выставил свою кандидатуру на должность преподавателя

в Женевском университете. Юноша так понравился магистрату, что специально для него и ещё одного одного кандидата на место преподавателя была учреждена отдельная кафедра математики, где Крамер и работал в последующие годы.

Слайд 8 Учёный много путешествовал по Европе, перенимая опыт у

Учёный много путешествовал по Европе, перенимая опыт у знаменитых математиков своего

знаменитых математиков своего времени – Иоганна Бернулли и Эйлера

в Базеле, Галлея и де Муавра в Лондоне, Мопертюи и Клеро в Париже и других. Со многими из них он продолжал переписываться всю жизнь.
В 1729 году Крамер возобновляет преподавательскую работу в Женевском университете. В это время он участвует в конкурсе Парижской Академии и занимает второе место.


Слайд 9 Талантливый учёный написал множество статей на самые разные

Талантливый учёный написал множество статей на самые разные темы: геометрия, история,

темы: геометрия, история, математика, философия. В 1730 году он

опубликовал труд по небесной механике.


Слайд 10 В 1740-е гг. Иоганн Бернулли поручает Крамеру подготовить

В 1740-е гг. Иоганн Бернулли поручает Крамеру подготовить к печати сборник

к печати сборник своих работ. В 1742 году Крамер

публикует сборник в 4-х томах. В 1744 году он выпускает посмертный сборник работ Якоба Бернулли (брата Иоганна Бернулли), а также двухтомник переписки Лейбница с Иоганном Бернулли. Эти работы вызвали большой интерес со стороны учёных всего мира.

Габриэль Крамер скончался 4 января 1752 года во Франции


Слайд 11 Теорема Крамера. Если определитель системы отличен от нуля,

Теорема Крамера. Если определитель системы отличен от нуля, то система линейных

то система линейных уравнений имеет одно единственное решение, причём

неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Решение системы линейных уравнений методом Крамера


Слайд 12 Дана система

Дана система

Слайд 13 Формулы Крамера



………….

Формулы Крамера ………….

Слайд 15 Заменяя столбец с коэффициентами соответствующей переменной свободными членами:

Заменяя столбец с коэффициентами соответствующей переменной свободными членами:

Слайд 16 Решение системы двух линейных уравнений с двумя неизвестными

Решение системы двух линейных уравнений с двумя неизвестными методом Крамера          Ответ:

методом Крамера

         Ответ: (1;-1)
1)

2)  Фирма состоит из двух отделений, суммарная величина прибыли которых в минувшем году составила 12 млн усл. ед. На этот год запланировано увеличение прибыли первого отделения на 70%, второго – на 40%. В результате суммарная прибыль должна вырасти в 1,5 раза. Какова величина прибыли каждого из отделений: a) в минувшем году; б) в этом году?

Решение. Пусть x и y – прибыли первого и второго отделений в минувшем году. Тогда условие задачи можно записать в виде системы:



Решив систему, получим x = 4, y = 8.

Ответ: а) прибыль в минувшем году первого отделения - 4 млн усл. ед., второго - 8 усл.ед.

б) прибыль в этом году первого отделения 1,7. 4 = 6,8 млн усл. ед.,

второго 1,4. 8 = 11,2 млн усл. ед.


Слайд 17
1) система линейных уравнений имеет единственное решение
(система совместна

1) система линейных уравнений имеет единственное решение(система совместна и определённа)Условия:При решении

и определённа)
Условия:

При решении системы уравнений могут встретиться три случая:


Слайд 18 2) система линейных уравнений имеет бесчисленное множество решений
(система

2) система линейных уравнений имеет бесчисленное множество решений(система совместна и неопределённа)Условия:т.е.

совместна и неопределённа)
Условия:
т.е. коэффициенты при неизвестных и свободные члены

пропорциональны

Слайд 19 3) система линейных уравнений решений не имеет
(система несовместна)
Условия:
Система

3) система линейных уравнений решений не имеет(система несовместна)Условия:Система называется несовместной, если

называется несовместной, если у неё нет ни одного решения,

и совместной, если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой, а более одного – неопределённой.

Слайд 20 Решение системы трех линейных уравнений с
тремя двумя

Решение системы трех линейных уравнений с тремя двумя неизвестными методом КрамераРешение. Находим определители системы:

неизвестными методом Крамера


Решение. Находим определители системы:


Слайд 22


Ответ: (1; 0; -1) .

Ответ: (1; 0; -1) .

  • Имя файла: reshenie-sistemy-lineynyh-uravneniy-metodom-kramera.pptx
  • Количество просмотров: 154
  • Количество скачиваний: 1