Слайд 2
Зміст
Обчислювальна техніка
Ранні пристосування та пристрої для лічби
Механічні обчислювальні
пристрої
Електронні обчислювальні пристрої
Покоління ЕОМ
Перше Покоління (1950-1960)
Друге Покоління (1960-1965)
Третє покоління
(1965–1970)
Четверте покоління (з 1970)
Слайд 3
Обчислювальна техніка
Обчислювальна техніка — найважливіший компонент процесу обчислень і
обробки даних. Першими пристосуваннями для обчислень були, ймовірно, лічильні
палички, які й сьогодні використовуються в початкових класах багатьох шкіл для навчання лічбі. Розвиваючись, ці пристосування ставали складнішими, наприклад, такими як фінікійські глиняні фігурки, також призначені для наочного подання кількості, однак для зручності поміщались при цьому у спеціальні контейнери. Такими пристосуваннями, схоже, користувались торговці і рахівники того часу.
Слайд 4
Ранні пристосування та пристрої для лічби
Людство навчилось користуватись
найпростішими лічильними пристроями тисячі років тому. Найбільш затребуваною виявилась
необхідність визначати кількість предметів, що використовуються у міновій торгівлі. Одним з найпростіших рішень було використання масового еквівалента предмета обміну, що не вимагало точного перерахунку кількості його складових. Для цього використовувались найпростіші балансирні ваги, які стали, таким чином, одним з перших пристроїв для кількісного визначення маси.
Слайд 5
Немеханічні обчислювальні пристрої
3000 років до н. е. — у стародавньому
Вавилоні була винайдена перша рахівниця — абак. Кількість підрахованих предметів відповідало числу пересунутих
кісточок цього інструменту.
500 років до н. е. — у Китаї з'явився більш «сучасний» варіант абаку з кісточками на стрижнях — суаньпань. Одним із різновидів суаньпань є російська рахівниця, яка іноді використовується і нині.
Слайд 6
Механічні обчислювальні пристрої
87 рік до н. е. — у Греції
був виготовлений «антикітерський механізм»— механічний пристрій на базі зубчастих
передач, що був спеціалізованим астрономічним обчислювачем.
1492 рік — Леонардо да Вінчі в одному зі своїх щоденників намалював ескіз 13-розрядного підсумовувального пристрою з десятизубними кільцями.
1630 рік — Річард Деламейн створив кругову логарифмічну лінійку.
1642 рік — Блез Паскаль представив «Паскаліну» — перший реально здійснений і такий, що отримав широку популярність механічний цифровий обчислювальний пристрій.
1801 рік — Жозеф Мари Жоскар збудував ткацький верстат з програмним керуванням, програма роботи якого задавалась комплектом перфокарт.
1820 рік — перший промисловий випуск арифмометрів.
1912 рік — створена машина для інтегрування звичайних диференціальних рівнянь за проектом російського вченого Крилова.
1927 рік — в Массачусетському технологічному інституті була створена аналогова обчислювальна машина.
1938 рік — німецький інженер Конрад Цузе побудував свою першу машину, названу Z1.
Слайд 7
Електронні обчислювальні машини
Калькулятори продовжували розвиватись, але комп'ютери додали
найважливіший елемент — умовні команди та більше пам'яті, що дозволило
автоматизувати численні розрахунки і взагалі, автоматизувати багато завдань з обробки текстів. Комп'ютерна технологія зазнавала значних змін кожні десять років, починаючи з 1940 року.
Обчислювальна техніка стала платформою для інших завдань, не тільки обчислень, таких як автоматизація процесів, електронних засобів зв'язку, контроль обладнання, розваги, освіта тощо. Кожна галузь у свою чергу, запровадила власні вимоги для обладнання, яке розвивається відповідно до цих вимог.
Перші комп'ютери вимагали від операторів доволі багато ручної рутинної роботи із введення даних і супроводження обчислень.
Слайд 8
Покоління ЕОМ
Покоління ЕОМ — один із класів у
класифікації обчислювальних систем за ступенем розвитку апаратних і програмних
засобів.
Покоління визначається елементною базою, архітектурою та обчислювальними можливостями.
Покоління ЕОМ:
І — використання електровакуумних ламп.
ІІ — використання транзисторів.
ІІІ — використання інтегральних схем.
IV — використання мікропроцесорів.
V — використання нанотехнологій.
Слайд 9
Перше покоління (1950–1960)
ЕОМ цього покоління базувались на дискретних
елементах і вакуумних лампах, мали великі габарити, масу, потужність,
володіючи при цьому малою надійністю. Основна технологія збірки — навісний монтаж. Вони використовувались переважно для вирішення науково-технічних завдань атомної промисловості, реактивної авіації та ракетобудування.
Збільшенню кількості вирішуваних завдань перешкоджали низька надійність і продуктивність, а також надзвичайно трудомісткий процес підготовки, введення та налагодження програми, написаної мовою машинних команд, тобто у формі двійкових кодів. Машини цього покоління мали швидкодію близько 10-20 тисяч операцій в секунду і оперативну пам’ять приблизно 1 кілобайт (1024 слова). У цей же період з'явились перші прості мови для автоматизованого програмування.
Слайд 10
Друге покоління (1960–1965)
Як елементна база використовувались дискретні напівпровідникові
прилади і мініатюрні дискретні деталі. Основна технологія збірки — одно-та
двосторонній друкований монтаж невисокої щільності. У порівнянні з попереднім поколінням значно зменшились габарити і енерговитрати, зросла надійність. Зросли також швидкодія (приблизно 500 тисяч операцій за секунду) і обсяг оперативної пам'яті (16-32 Кб). Це відразу розширило коло користувачів, а отже, вирішуваних завдань. З'явились мови високого рівня і відповідні транслятори. Були розроблені службові програми для автоматизації профілактики і контролю роботи ЕОМ, а також для найкращого розподілу ресурсів при вирішенні завдань користувача. (Задача економії часу процесора і оперативної пам'яті залишилась, як і в першому поколінні).
Слайд 11
Третє покоління (1965–1970)
Як елементна база використовувались інтегральні схеми
малої інтеграції з десятками активних елементів на кристал, а
також гібридні мікросхеми з дискретних елементів. Основна технологія збірки — двосторонній друкований монтаж високої щільності. Це скоротило габарити і потужність, підвищило швидкодію, знизило вартість універсальних (великих) ЕОМ. Але найголовніше — з'явилась можливість створення малогабаритних, надійних, дешевих машин — мініЕОМ. МініЕОМ спочатку призначались для заміни апаратно-реалізованих контролерів у контурах управління різних об'єктів і процесів (зокрема ЕОМ). Поява мініЕОМ скоротила терміни розробки контролерів, оскільки замість розробки складних логічних схем потрібно купити мініЕОМ і запрограмувати її належним чином. Універсальний пристрій володів надмірністю, проте мала ціна і універсальність периферії виявились значною перевагою, що забезпечило високу економічну ефективність.