функция f неотрицательна и непрерывна на отрезке [a; b],
тогда площадь S соответствующей криволинейной трапеции можно приближенно подсчитать следующим образом.
Разобьем отрезок [a; b] на n отрезков одинаковой длины точками
x0 = a < x 1 < x 2 < … < x n -1 < x n = b, и пусть х = = x k – x k - 1, где k = 1, 2, …, n-1, n. На каждом из отрезков [x k-1; x k] как на основании построим прямоугольник высотой f(x k-1). сумма площадей всех таких прямоугольников (рис.2) равна:
Sn = (f(x0) + f(x1) + … + f(x n-1)).
Т.к f(x) непрерывная функция , то при x o,т.е n , то Sn S