Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему БИОФИЗИКА КЛЕТКИ

Содержание

План лекции1. Введение 2. Градиенты биологических систем3. Ультраструктура и функции биологических мембран4. Пассивный транспорт4.1. Диффузия4.1.1. Транспорт ионов с помощью подвижного переносчика4.1.2. Эстафетный перенос4.1.3. Перенос ионов через каналы биомембран4.2. Осмос4.3. Фильтрация4.4. Водный обмен между кровь
БИОФИЗИКА КЛЕТКИ  Лекция 1.Транспорт веществ через биологические мембраныПрезентации по физикеhttp://prezentacija.biz/prezentacii-po-fizike/prezentacii-po-biofizike/ План лекции1. Введение   2. Градиенты биологических систем3. Ультраструктура и функции 1. ВведениеСтруктурной единицей живого организма является клетка, которой присущи все основные жизненные Биофизика клетки является разделом науки, который связывает воедино биофизические исследования, проводимые на В середине 19 века великий французский физиолог Клод Бернар высказал гипотезу существования . Выживание организма в условиях непрерывно меняющейся среды обусловлено способностью живых Положение о том, что именно постоянство внутренней среды определяет оптимальное условие для В 1929 году  крупнейший  американский физиолог Уолтер Б. Кэннон, . Гомеостаз - это универсальное свойство живых организмов активно сохранять стабильность Это динамическое постоянство возможно только за счет непрерывного обмена веществом и энергией Такой обмен возможен лишь при наличии градиентов на границах перечисленных сред. . 2.Градиенты биологических систем Под градиентом того или иного параметра системы для линейных функций подразумевают разность Заметим, что градиент - это вектор. Обилие градиентов является одним из отличий . Различие становится особенно ощутимым, если учесть, что эта разница поддерживается на Столь же велики концентрационные градиенты для других ионов, белков, углеводов Многие патологические процессы, связанные с нарушением транспорта веществ в организме, Концентрационные градиенты предопределяют стремление веществ перейти туда, где их концентрация ниже, а Однако, наличие градиентов само по себе не означает, что вещества транспортируются через 3. Ультраструктура и функции биологических мембранПроникновение веществ в клетку и из клетки 1 - двойной фосфолипидный слой, 2 - периферические белки,3 - интегральные (трансмембранные Такая молекула называется лизолицетин. Оказавшись в составе мембран, такие молекулы образуют пору, Действие многих лекарственных веществ направлено на восстановление барьерных свойств мембран клеток. В 4. Пассивный транспорт Перемещение веществ в клетку или из нее во внеклеточную среду может осуществляться Часто присутствуют несколько градиентов, тогда перенос вещества осуществляется по результирующей всех градиентов. 4.1. Диффузия Основной механизм пассивного транспорта, обусловленный концентрационным градиентом - диффузия. Диффузия - это Математическое описание дал Фик: скорость диффузии Проникновение растворенных веществ, обладающих электрическим зарядом, зависит не только от концентрационного градиента, Помимо простой существует облегченная диффузия и ее разновидность – обменная диффузия. Рассмотрим 4.1.1.Транспорт ионов с помощью подвижных переносчиковснаруживнутрим м мембранаА - транспортируемое вещество, Таким образом, например, переносит ионы калия антибиотик валиномицин. Молекула валиномицина, 4.1.2.Эстафетный перенос Эстафетный перенос при обменной диффузии осуществляется с помощью двух Примером эстафетного переноса может служить движение через мембрану ионов натрия Na+ с Диффундируя вдоль мембраны, молекула грамицидина встречается с другой молекулой грамицидина, находящейся на Одна из главных особенностей пассивного транспорта - его избирательность. Существуют переносчики для 4.1.3. Перенос ионов через каналы биомембран В основе многих физиологических процессов (передача электрических и химических сигналов, мышечное сокращение, Необратимо блокируют Na - ионные каналы такие паралитические яды, как тетродотоксин, вырабатываемый Сильный блокирующий эффект калиевых ионных каналов оказывает тетраэтиламмоний. Существуют также активаторы, открывающие Каналам биомембран свойственна характерная избирательность для ионов (селективность), а также способность открываться Кроме вышеописанных каналов в мембране находятся неспецифические каналы для пассивного транспорта ионов 4.2.ОсмосКлеточные мембраны обладают свойством полупроницаемости, то есть способностью хорошо пропускать одни вещества, Осмос- это движение молекулы  воды через полупроницаемую мембрану из области меньшей Осмос, по существу, представляет собой диффузию молекул растворителя. За меру осмотического давления P=iRCT	R- универсальная газовая постоянная, i - изотонический коэффициент - показывает во сколько 4.3.ФильтрацияКроме осмоса, перенос воды может осуществляться путем фильтрации при наличии градиента гидростатического Фильтрация - движение жидкости через поры какой-либо перего­родки под действием гидростатического давления. 4.4.Водный обмен между кровью и лимфой Явление фильтрации и осмоса имеют особое Особое значение в водном обмене между кровью и тканевой жидкостью имеет та Онкотичесое давление крови человека равно 30 мм.рт.ст. ,а тканевой жид­кости и лимфы Ри Ри Рис. 9.Схема водного обмена между кровью и лимфой. Соответственно, если сравнить значения градиентов онкотического и гидростатического давлений в различных участках В норме процессы фильтрации и осмоса скомпенсированы. При патологиях, например: лучевая болезнь 5. Активный транспортПеренос молекул и ионов против электрохимического градиента, осуществляемый клеткой за A=mRTlnС1/C2	A-концентрационная работа,	 m-количество молей вещества,  перенесенных через мембрану, T -абсолютная температура, У человека в покое примерно 30 - 40 % всей энергии, Активный транспорт веществ через биологические мембраны имеет огромное значение. За счет активного Изучение систем активного транспорта, называемых биологическими насосами, является важной задачей исследования клеточных В покое мембрана не является абсолютно непроницаемой для любого вида ионов. Диффузионные Наиболее характерная черта таких насосов - перенос вещества против градиентов. Следовательно, необходимо Рассмотрим этот процесс на примере К+-Nа насоса. Ионы К+ и Nа+ вводятся При повышении концентрации ионов натрия активируется так называемая калий-натрий зависимая АТФ-аза, Факторы, характеризующие систему активного транспорта.1. Перенос веществ против электро-химических градиентов.2. Наличие источника Роль активного транспорта в физиологическом процессе Активный транспорт необходим: Для поддержания высокой БИОФИЗИКА КЛЕТКИ  ЛЕКЦИЯ 2  Биоэлектрические потенциалы План лекции 1.Методы измерения потенциала2.Модель Нернста3. Потенциал покоя4. Потенциал действия5. Распространение нервного импульса вдоль возбудимого волокна 1. Методы измерения мембранного потенциала.Это явление лежит в основе возбудимости клеток, регуляции В процессе жизнедеятельности в клетках и тканях могут возникать разности электрических Мембранным потенциалом называется разность потенциалов между внутренней (цитоплазматической) и наружной поверхностями мембраны:.В Прогресс в исследовании биопотенциалов обусловлен:разработкой микроэлектродного метода внутриклеточного измерения потенциалов; созданием специальных В гигантский аксон кальмара можно ввести микроэлектрод, не нанеся аксону значительных повреждений.Стеклянный Металлический электрод такой толщины пластичен, и не может проколоть клеточную мембрану, кроме Второй электрод сравнения (4) - располагается в растворе (6) у наружной поверхности Микроэлектродный метод дал возможность измерить биопотенциалы не только на гигантском аксоне кальмара, Биопотенциалы, электрическая активность клеток животного и растительного происхождения, обусловленная неравномерным распределением электролитов Другим эффективным методом измерения потенциала мембраны стал метод локальной фиксации потенциала ( 2. Элемент НернстаСамой простой и адекватной моделью является элемент Нернста (Рис.12.). Сосуд, ). Вследствие разницы концентрации, ионы диффундируют, причем один из ионов, как правило, При этом ЭДС, возникающая в концентрационном элементе, образованном раствором одной соли, определяется Уравнение Нернста В реальных условиях, в клетке, разница скорости движения анионов и катионов Элемент Нернста Теория электролитической диссоциации была впервые применена и объяснена в механизме биоэлектрогенеза В.Ю.Чаговцем 3. Потенциал покоя.Установлено, что цитоплазма клеток существенно отличается по химическому составу от Ионы Разность ионных концентраций создает силу, стремящуюся выров­нять содержание ионов, но мембрана препятствует Таким образом, источником электричества в живой ткани служит концентрационный элемент, образованный растворами уравнение Гольдмана-Ходжкина-Катца. Уравнение Гольдмана позволяет рассчитать разность потенциалов, существующую в разных клетках между цитоплазмой Потенциал покоя - стационарная разность электрических потенциалов, регистрируемая между внутренней и Потенциал покоя определяется разной концентрацией ионов по разные стороны мембраны и диффузией Проанализируем уравнение Гольдмана в состояние покоя:В состоянии покоя проницаемость мембраны для ионов Для аксона кальмара, например, Из уравнения Гольдмана получим уравнение Нернста для мембранного потенциала покоя:; Таким образом, уравнение Нернста - частный случай уравнения Гольдмана. При концентрации в Итак, все клетки в состоянии покоя характеризуются определенной степенью поляризации. Клеточная мембрана 4.Потенциал действия Все клетки возбудимых тканей при действии различных раздражителей достаточной силы Обязательным признаком возбуждения является изменение электрического состо­яния клеточной мембраны. Опыт показывает, что Общее изменение разности потенциалов между клеткой и средой, происходящее при возбуждении, называется потенциалом действия Потенциал действия (ПД), или потенциал возбуждения нервных клеток (волокон), возникает в ответ Классическое исследование параметров и механизма ПД проделано на гигантском аксоне кальмара с При подаче короткого и слабого толчка выходящего тока внутриклеточный электрод регистрировал кратковременное . При усилении стимула и достижении порога раздражения, т.е. критического уровня деполяризации Перенос ионов через каналы биомембран В потенциале действия различают пик (спайк) и следовые потенциалы.Пик ПД представляет собой Общая длительность пика в данном объекте составляет около 3мс, амплитуда пика 120мВ, Вслед за пиком ПД регистрируются значительно более слабые и длительные отрицательный График изменения мембраного потенциала при разных воздействиях .График потенциала действия      - возбуждающий импульс от Потенциал действия имеет стандартные амплитуду и временные параметры, не зависящие от силы Причиной развития ПД является вызываемое критической деполяризацией мембраны открытие ее натриевых и Открытие потенциалзависимых каналов приводит к пассивному движению соответствующих ионов по их электрохимическим При развитии пика ПД отношение становится (в покое оно составляет ). Связь Рассмотрим локальный подпороговый ответ (ЛО) в нервной клетке. Этот ответ обладает в Рассчитаем равновесный электрохимический потенциал для натрия при возбуждении: PNa+: PK+: PCl+=30:1:0,45	т.е. по В опытах было доказано, что этот равновесный потенциал по Na совпадает с Характерные свойства потенциала действия:Наличие порогового значения деполяризующего потенциала. Закон Наличие периода рефрактерности, невозбудимости мембраны во время развития потенциала действия и остаточных Итак, генерация потенциала действия в возбужденных мембранах возникает под влиянием различных факторов . Этот процесс может достигнуть критического уровня деполяризации, после чего проводимость мембраны Увеличивается активация калиевых каналов, что приводит к увеличению выходящего калиевого тока, который Физиологическая роль ПД в потенциалзависимых клетках не ограничивается только возбудимостью клеточной 5. Распространение нервного импульса вдоль возбудимого волокнаЕсли в каком-нибудь участке возбудимой мембраны Локальные токи при распространении нервного импульса по нервному волокну Положим, что один участок аксона находится в возбужденном состоянии, а соседний участок Поэтому и в аксоплазме, и в окружающем растворе возникают локальные токи: между Локальные токи образуются и внутри аксона, и на наружной его поверхности. Таким образом, в областях, близких к возбужденному участку, отрицательный потенциал покоя повышается Происходит деполяризация мембраны, развивается потенциал действия. Затем возбуждение передается дальше на покоящиеся участки мембраны Может возникнуть вопрос, почему возбуждение распространяется по аксону не в обе стороны Эволюция животного мира привела к появлению нервных волокон, покрытых миелиновой оболочкой, которая Возбуждение по миелинизированному волокну распространяется сальтаторно (скачкообразно) от одного перехвата Ранвье (участка,
Слайды презентации

Слайд 2 План лекции
1. Введение
2. Градиенты биологических

План лекции1. Введение  2. Градиенты биологических систем3. Ультраструктура и функции

систем
3. Ультраструктура и функции биологических мембран
4. Пассивный транспорт
4.1. Диффузия
4.1.1.

Транспорт ионов с помощью подвижного переносчика
4.1.2. Эстафетный перенос
4.1.3. Перенос ионов через каналы биомембран
4.2. Осмос
4.3. Фильтрация
4.4. Водный обмен между кровь и лимфой
5. Активный транспорт

Слайд 3 1. Введение
Структурной единицей живого организма является клетка, которой

1. ВведениеСтруктурной единицей живого организма является клетка, которой присущи все основные

присущи все основные жизненные функции. Клетка - открытая термодинамическая

система, которая обменивается с окружающей средой веществом, энергией и информацией.

Слайд 4 Биофизика клетки является разделом науки, который связывает воедино

Биофизика клетки является разделом науки, который связывает воедино биофизические исследования, проводимые

биофизические исследования, проводимые на атомном и молекулярном уровне с

исследованиями, проводимыми на уровне органов и биологических систем в целом.

Слайд 5 В середине 19 века великий французский физиолог Клод

В середине 19 века великий французский физиолог Клод Бернар высказал гипотезу

Бернар высказал гипотезу существования плазматической мембраны, до него биологи-морфологи

представляли клетку в виде комочков живого вещества, не имеющих оболочки.

Слайд 6 . Выживание организма в условиях непрерывно меняющейся

. Выживание организма в условиях непрерывно меняющейся среды обусловлено способностью

среды обусловлено способностью живых систем сохранять свое стационарное состояние.

Для обеспечения такого состояния у всех организмов - от простых до самых сложных - существуют различные анатомические, физиологические и поведенческие приспособления. Все они направлены на поддержание постоянства внутренней среды.

Слайд 7 Положение о том, что именно постоянство внутренней среды

Положение о том, что именно постоянство внутренней среды определяет оптимальное условие

определяет оптимальное условие для жизни и

размножения организма было высказано К. Бернаром в 1857 году.

Действительно, внутренняя среда высших животных обладает относительным постоянством физико-химических параметров. Для неё характерно постоянство температуры, рH, артериального давления, содержание кислорода, углекислого газа, различных ионов, сахаров и других физиологических констант, величины которых находятся в постоянной зависимости от структур биологической мембраны .


Слайд 8 В 1929 году крупнейший американский

В 1929 году крупнейший американский физиолог Уолтер Б. Кэннон, расширив

физиолог Уолтер Б. Кэннон, расширив концепцию К. Бернара, создал

учение о гомеостазе

Слайд 9 . Гомеостаз - это универсальное свойство живых

. Гомеостаз - это универсальное свойство живых организмов активно сохранять

организмов активно сохранять стабильность работы всех систем организма в

ответ на воздействия, нарушающие эту стабильность, и поддерживать динамическое постоянство внутренней среды, а также устойчивость основных физиологических функций организма.

Слайд 10 Это динамическое постоянство возможно только за счет непрерывного

Это динамическое постоянство возможно только за счет непрерывного обмена веществом и

обмена веществом и энергией между внеклеточной и внутриклеточной средой

- с одной стороны,
и между внеклеточной средой и внешней средой, окружающей органы и организм в целом - с другой стороны.

Слайд 11 Такой обмен возможен лишь при наличии градиентов на

Такой обмен возможен лишь при наличии градиентов на границах перечисленных сред. .

границах перечисленных сред. .


Слайд 12 2.Градиенты биологических систем

2.Градиенты биологических систем

Слайд 13

Под градиентом того или иного параметра системы для

Под градиентом того или иного параметра системы для линейных функций подразумевают

линейных функций подразумевают разность величин этого параметра X в

двух точках пространства (A, B), отнесенную к расстоянию AB между этими точками:

Слайд 14 Заметим, что градиент - это вектор. Обилие градиентов

Заметим, что градиент - это вектор. Обилие градиентов является одним из

является одним из отличий организма от неживых систем. Наиболее

выражены градиенты на границе между цитоплазмой и внеклеточной средой. На первый взгляд это не столь уж большая разница в содержании тех или иных веществ в клетке и вне её. Например, в цитоплазме нервного волокна млекопитающих содержится 150 мМ/л, а в межклеточной жидкости - 5,0 мМ/л ионов калия. Разница - 145 мМ/л.

Слайд 15 . Различие становится особенно ощутимым, если учесть, что

. Различие становится особенно ощутимым, если учесть, что эта разница поддерживается

эта разница поддерживается на ничтожно малом расстоянии - порядка

10-8 м (толщина клеточной мембраны).
Рассчитаем концентрационный градиент между клеточной мембраной по калию: пятнадцатимиллиардный градиент.

Слайд 17 Столь же велики концентрационные градиенты для

Столь же велики концентрационные градиенты для других ионов, белков, углеводов

других ионов, белков, углеводов и т.д. Не менее выражены

для клетки такие градиенты, как осмотический и электрический. Важно понять, что именно градиент, а не просто разность величин, является движущей силой многих жизненных процессов, в частности, переноса веществ между клетками и внеклеточной средой, а также между внутренней и внешними средами организма.

Слайд 18 Многие патологические процессы, связанные с нарушением

Многие патологические процессы, связанные с нарушением транспорта веществ в организме,

транспорта веществ в организме, часто обусловлены не уменьшением концентрации

вещества, а увеличением расстояния между средами, в частности, за счет утолщения тех или иных тканевых структур. В мертвых тканях градиенты падают. Только живое в состоянии поддерживать неравновесное состояние своих сред.

Слайд 19 Концентрационные градиенты предопределяют стремление веществ перейти туда, где

Концентрационные градиенты предопределяют стремление веществ перейти туда, где их концентрация ниже,

их концентрация ниже,
а осмотические заставляют воду переходить через

мембрану в направлении более высокого осмотического давления.

Слайд 20 Однако, наличие градиентов само по себе не означает,

Однако, наличие градиентов само по себе не означает, что вещества транспортируются

что вещества транспортируются через мембрану. Это в конечном счете

определяется способностью мембраны пропускать через себя то или иное вещество. Разные мембраны неодинаково относятся к одним и тем же веществам. Эта способность мембран избирательно пропускать вещества обозначается термином - проницаемость мембран .

Слайд 21 3. Ультраструктура и функции биологических мембран
Проникновение веществ в

3. Ультраструктура и функции биологических мембранПроникновение веществ в клетку и из

клетку и из клетки в большой степени зависит от

свойств мембраны. Мембраны образуют оболочки всех органелл клетки: ядра, митохондрий, лизосом, аппарата Гольджи, эндоплазматического ретикулума. Раньше считалось, что мембраны состоят только из тонкого слоя липидов. В экспериментах с эритроцитами установили, что площадь липидов, входящих в состав мембраны, вдвое больше площади самого эритроцита, в результате был сделан вывод, что мембраны состоят из двойного слоя фосфолипидов.
(3)

Слайд 23 1 - двойной фосфолипидный слой,
2 - периферические

1 - двойной фосфолипидный слой, 2 - периферические белки,3 - интегральные

белки,
3 - интегральные (трансмембранные белки),
4 - непотенциалзависимый канал (пример:

специфический канал для ионов К, по нему осуществляется пассивный транспорт),
5 - потенциалзависимый канал,
6 - пора, возникающая в мембране в результате образования молекул лизолицетина.

Рис.2. Основные молекулярные комплексы биологической мембраны.


Слайд 24 Такая молекула называется лизолицетин. Оказавшись в составе мембран,

Такая молекула называется лизолицетин. Оказавшись в составе мембран, такие молекулы образуют

такие молекулы образуют пору, например, на рис. 2 показана

пора 6. Мембрана теряет барьерные свойства. Это приводит к повышению проницаемости мембраны клеток для ионов натрия и некоторых других или к полному разрушению клеток. Например, при укусах некоторых змей наблюдается гемолиз эритроцитов. Проницаемости для всех ионов при образовании пор в мембране выравнивается. Потенциал покоя снижается . Митохондрия не может участвовать в синтезе АТФ, нервные клетки не могут проводить нервный импульс.
Подобные процессы происходят при вирусных и бактериальных инфекциях, действии ионизирующего излучения и т.д.

Слайд 25 Действие многих лекарственных веществ направлено на восстановление барьерных

Действие многих лекарственных веществ направлено на восстановление барьерных свойств мембран клеток.

свойств мембран клеток.

В заключении этого раздела перечислим основные

функции биологических мембран: барьерная, матричная, механическая и специфические - генерация и проведение биопотенциалов действия, рецепторная, энергетическая

Слайд 26 4. Пассивный транспорт

4. Пассивный транспорт

Слайд 27 Перемещение веществ в клетку или из нее во

Перемещение веществ в клетку или из нее во внеклеточную среду может

внеклеточную среду может осуществляться многими способами. В зависимости от

того, что является движущей силой перемещения, все виды перемещения веществ могут быть разделены на пассивный и активный транспорт. Пассивный транспорт - всегда за счет энергии, сконцентрированной в каком-нибудь градиенте, а не за счет АТФ. Пассивный всегда по направлению градиента, то есть от более высокого уровня к низкому

Слайд 28 Часто присутствуют несколько градиентов, тогда перенос вещества осуществляется

Часто присутствуют несколько градиентов, тогда перенос вещества осуществляется по результирующей всех

по результирующей всех градиентов. Основные градиенты, присущие живым организмам

- концентрационный, осмотический, электрический, гидростатический. В соответствии с этим имеются следующие виды пассивного транспорта: диффузия, осмос, электроосмос, аномальный осмос и фильтрация.

Слайд 29 4.1. Диффузия

4.1. Диффузия

Слайд 30 Основной механизм пассивного транспорта, обусловленный концентрационным градиентом -

Основной механизм пассивного транспорта, обусловленный концентрационным градиентом - диффузия. Диффузия -

диффузия.
Диффузия - это самопроизвольный процесс проникновения веществ из

области большей в область меньшей концентрации в результате теплового хаотического движения молекул.

Слайд 31
Математическое описание дал Фик: скорость диффузии

Математическое описание дал Фик: скорость диффузии

прямо пропорциональна градиенту концентрации и площади , через которую осуществляется диффузия.


- коэффициент пропорциональности. Знак "–"означает, что диффузия идет из области большей концентрации в область меньшей.


Слайд 32 Проникновение растворенных веществ, обладающих электрическим зарядом, зависит не

Проникновение растворенных веществ, обладающих электрическим зарядом, зависит не только от концентрационного

только от концентрационного градиента, но и от электрического градиента

мембраны и может возникнуть движение против концентрационного по электрическому градиенту. Совокупность концентрационного и электрического градиента называется электрохимическим градиентом

Слайд 33 Помимо простой существует облегченная диффузия и ее разновидность

Помимо простой существует облегченная диффузия и ее разновидность – обменная диффузия.

– обменная диффузия. Рассмотрим несколько видов этого процесса:
4.1.1.

Транспорт ионов с помощью подвижных переносчиков

4.1.2. Эстафетный перенос


Слайд 34 4.1.1.Транспорт ионов с помощью подвижных переносчиков
снаружи

внутри

м
м
мембрана

А

4.1.1.Транспорт ионов с помощью подвижных переносчиковснаруживнутрим м мембранаА - транспортируемое вещество,

- транспортируемое вещество, Х - подвижный переносчик,
Х *А -

комплекс подвижного переносчика с транспортируемым веществом

Рис.3. Пассивный транспорт подвижных переносчиков


Слайд 35 Таким образом, например, переносит ионы калия

Таким образом, например, переносит ионы калия антибиотик валиномицин. Молекула валиномицина,

антибиотик валиномицин. Молекула валиномицина, имеющая внутри полость, захватывает в

нее ион калия на одной стороне мембраны и переносит этот ион на другую сторону мембраны.
В присутствии валиномицина отношение коэффициентов проницаемостей для ионов Na+ и К+ биологической мембраны равен:

В норме, в условиях простой диффузии это отношение равно 25

Существуют переносчики для глюкозы, лактозы, аминокислот, глицерола, нуклеотидов и т.д.;


Слайд 36 4.1.2.Эстафетный перенос
Эстафетный перенос при обменной диффузии

4.1.2.Эстафетный перенос Эстафетный перенос при обменной диффузии осуществляется с помощью

осуществляется с помощью двух или нескольких носителей через мембрану

частицы. При этом частица последовательно передается в мембране от одного носителя к другому.

Слайд 37 Примером эстафетного переноса может служить движение через мембрану

Примером эстафетного переноса может служить движение через мембрану ионов натрия Na+

ионов натрия Na+ с помощью антибиотика грамицидина.Грамицидин, создающий в

мембране полуканал,

захватывает ион натрия на наружной стороне мембраны.


Слайд 38 Диффундируя вдоль мембраны, молекула грамицидина встречается с другой

Диффундируя вдоль мембраны, молекула грамицидина встречается с другой молекулой грамицидина, находящейся

молекулой грамицидина, находящейся на внутренней стороне мембраны, и передает

ей ион натрия. Молекулы грамицидина образуют временную цепочку поперек мембраны и «по эстафете» передают ионы Na+ от одной молекулы переносчика к другой. Затем ион натрия выбрасывается внутрь клетки. Так как грамицидин фактически увеличивает проницаемость мембраны для ионов Na+, т.е. нарушает нормальное функционирование клетки, он используется в виде мази как контрацептив, блокирующий функционирование сперматозоидов и яйцеклеток. Вещества, облегчающие перенос ионов через мембрану, называются ионофорами (нонактин, валиномицин, грамицидин, моноксин и т.д.).

Слайд 39 Одна из главных особенностей пассивного транспорта - его

Одна из главных особенностей пассивного транспорта - его избирательность. Существуют переносчики

избирательность. Существуют переносчики для D-глюкозы, но нет переносчиков для

L-глюкозы. В случае простой диффузии избирательность определяется сродством переносимой частицы к гидрофильной голове фосфолипида.

Слайд 40 4.1.3. Перенос ионов через каналы биомембран

4.1.3. Перенос ионов через каналы биомембран

Слайд 43 В основе многих физиологических процессов (передача электрических и

В основе многих физиологических процессов (передача электрических и химических сигналов, мышечное

химических сигналов, мышечное сокращение, секреторный процесс и т.д. )

лежит прежде всего работа ионных каналов. Их
характеристики могут изменять некоторые фармакологические препараты и яды.
Существуют блокаторы ионных каналов, например, лекарственные вещества, антагонисты кальция (верапамил, нифедипин и др.) они временно блокируют ионные каналы, снижая мышечный тонус сосудов. Есть лекарственные вещества, временно блокирующие натриевые каналы, например, анестетик - лидокаин, новокаин. Они снижают местную чувствительность, устраняют чувство боли.

Слайд 44 Необратимо блокируют Na - ионные каналы такие паралитические

Необратимо блокируют Na - ионные каналы такие паралитические яды, как тетродотоксин,

яды, как тетродотоксин, вырабатываемый рыбой Spheroidus rubrides (фугу) или

сакситоксин, продуцируемый некоторыми планктонами.

Слайд 45 Сильный блокирующий эффект калиевых ионных каналов оказывает тетраэтиламмоний.


Сильный блокирующий эффект калиевых ионных каналов оказывает тетраэтиламмоний. Существуют также активаторы,

Существуют также активаторы, открывающие ионные каналы, например, лекарственный препарат

миноксидил, активирует калиевые каналы.

Слайд 46 Каналам биомембран свойственна характерная избирательность для ионов (селективность),

Каналам биомембран свойственна характерная избирательность для ионов (селективность), а также способность

а также способность открываться и закрываться при различных воздействиях

на мембрану (воротная функция). Переходы каналов из открытого состояния в закрытое (воротный механизм) могут быть обусловлены изменениями мембранного потенциала, взаимодействием с определенными химическими веществами, специфическим фосфорилированием каналов

Слайд 48 Кроме вышеописанных каналов в мембране находятся неспецифические каналы

Кроме вышеописанных каналов в мембране находятся неспецифические каналы для пассивного транспорта

для пассивного транспорта ионов (в первую очередь для ионов

калия). Эти каналы не имеют воротных механизмов, всегда открыты и почти не меняют свое состояние при электрических воздействиях на мембрану.

Слайд 49 4.2.Осмос
Клеточные мембраны обладают свойством полупроницаемости, то есть способностью

4.2.ОсмосКлеточные мембраны обладают свойством полупроницаемости, то есть способностью хорошо пропускать одни

хорошо пропускать одни вещества, например, воду, и плохо другие.

Вода проходит в результате осмоса

Слайд 50 Осмос- это движение молекулы воды через полупроницаемую

Осмос- это движение молекулы воды через полупроницаемую мембрану из области меньшей

мембрану из области меньшей в область большей концентрации растворенного

вещества. Сила вызывающая это движение - осмотическое давление.

Слайд 51 Осмос, по существу, представляет собой диффузию молекул растворителя.

Осмос, по существу, представляет собой диффузию молекул растворителя. За меру осмотического

За меру осмотического давления принимают то механическое давле­ние, например

гидростатическое, которое уравновешивает осмоти­ческое давление и выравнивает потоки молекул растворителя в одну и другую стороны. Осмотическое давление зависит от количества растворенных частиц и от температуры.

Слайд 52 P=iRCT R- универсальная газовая постоянная,
i - изотонический коэффициент

P=iRCT	R- универсальная газовая постоянная, i - изотонический коэффициент - показывает во

- показывает во сколько раз увеличи­вается количество частиц при

диссоциации молекулы вещества. Для неэлектролитов i=1.
Осм. давление крови человека 7,6–7,8 атм.

Слайд 53 4.3.Фильтрация
Кроме осмоса, перенос воды может осуществляться путем фильтрации

4.3.ФильтрацияКроме осмоса, перенос воды может осуществляться путем фильтрации при наличии градиента

при наличии градиента гидростатического давления. Фильтрация - движение жидкости

через поры какой-либо перего­родки под действием гидростатического давления.

Слайд 54 Фильтрация - движение жидкости через поры какой-либо перего­родки

Фильтрация - движение жидкости через поры какой-либо перего­родки под действием гидростатического

под действием гидростатического давления. под давлением.
Р - разность давлений

в начале и в конце поры,,


- длина поры,

- коэффициент вязкости жидкости.

r- радиус поры,


Слайд 55 4.4.Водный обмен между кровью и лимфой
Явление фильтрации

4.4.Водный обмен между кровью и лимфой Явление фильтрации и осмоса имеют

и осмоса имеют особое значение в процессе об­мена воды

между кровью и тканями. Осмотическое давление крови человека 7,6 - 7,8 атмосфер. Это давление является суммой давлений всех растворенных в плазме крови веществ.

Слайд 56 Особое значение в водном обмене между кровью и

Особое значение в водном обмене между кровью и тканевой жидкостью имеет

тканевой жидкостью имеет та часть общего осмотического давления, которая

обусловлена высокомоле­кулярными веществами - белками. Эта часть осмотического давле­ния называется онкотическим давлением. Величина осмотического давления в 200 раз превосходит величину онкотического давления. Несмотря на это онкотическому давлению принадлежит основная роль в поступлении воды в кровеносное русло из тканевой жид

Слайд 57 Онкотичесое давление крови человека равно 30 мм.рт.ст. ,а

Онкотичесое давление крови человека равно 30 мм.рт.ст. ,а тканевой жид­кости и

тканевой жид­кости и лимфы 10 мм.рт.ст. Под действием разности

онкотического давления крови и лимфы величиной 20 мм.рт.ст. вода поступает из лимфы в кровь. Одновременно с градиентом онкотического давления () существует и градиент гидростатического давления, обусловленный работой сердца (). В артериальном конце капилляра гидростатическое давление крови 30 мм.рт.ст.. На протяжении капилляра кровяное давление падает: в середине оно равно 20 мм.рт.ст, а в венозном конце - 10 мм.рт.ст..

Слайд 58 Ри
Ри
Рис. 9.
Схема водного обмена между кровью

Ри Ри Рис. 9.Схема водного обмена между кровью и лимфой.

и лимфой.


Слайд 59 Соответственно, если сравнить значения градиентов онкотического и гидростатического

Соответственно, если сравнить значения градиентов онкотического и гидростатического давлений в различных

давлений в различных участках капилляров, то очевидно, что в

артериальном конце преобладает гидростатическое давление - наблюдается фильтрация, в результате которой вода выходит из кровяного русла, а в венозном конце преобладает онкотическое давление, т.е. наблюдается осмос, и вода поступает из ткани в лимфу

Слайд 60 В норме процессы фильтрации и осмоса скомпенсированы. При

В норме процессы фильтрации и осмоса скомпенсированы. При патологиях, например: лучевая

патологиях, например: лучевая болезнь – нарушение проницаемости мембран, при

долгих голоданиях, гипертонии, шоке, ожогах, при больших кровопотерях уменьшается градиент онкотического давления, и тогда фильтрация воды преобладает над осмосом, вследствие этого наблюдаются отеки.

Слайд 61 5. Активный транспорт
Перенос молекул и ионов против электрохимического

5. Активный транспортПеренос молекул и ионов против электрохимического градиента, осуществляемый клеткой

градиента, осуществляемый клеткой за счет энергии метаболических процессов, называется

активным транспортом.
Осуществляя такой транспорт, клетка совершает работу, которая называется концентрационной или осмотической. Накопление клеткой вещества, содержащегося в окружающей среде в малых количествах, и выведение тех веществ, концентрация которых в окружающей среде значительно больше, чем в клетке, обеспечивается активным транспортом.

Слайд 62 A=mRTlnС1/C2 A-концентрационная работа, m-количество молей вещества, перенесенных через

A=mRTlnС1/C2	A-концентрационная работа,	 m-количество молей вещества, перенесенных через мембрану, T -абсолютная температура,

мембрану, T -абсолютная температура, -С1 и С2 концентрации ионов

внутри и вне клетки.

Слайд 63 У человека в покое примерно 30 -

У человека в покое примерно 30 - 40 % всей

40 % всей энергии, образующейся в ходе метаболических процессов,

расходуется на активный транспорт. В тканях, где активный транспорт особенно интенсивен, потребляется много кислорода даже в покое; так мозг человека составляет 1/50 массы тела, а потребляет в покое 1/5 всего кислорода. Активный транспорт - одно из удивительных свойств живых организмов.

Слайд 64 Активный транспорт веществ через биологические мембраны имеет огромное

Активный транспорт веществ через биологические мембраны имеет огромное значение. За счет

значение. За счет активного транспорта в организме создаются градиенты

концентраций, градиенты электрических потенциалов, градиенты давления и т.д., поддерживающие жизненные процессы, то есть с точки зрения термодинамики активный перенос удерживает организм в неравновесном состоянии, поддерживает жизнь.

Слайд 65 Изучение систем активного транспорта, называемых биологическими насосами, является

Изучение систем активного транспорта, называемых биологическими насосами, является важной задачей исследования

важной задачей исследования клеточных мембран. Нарушение активного транспорта приводит

к гибели клетки. Отключение Nа+- К+ насоса на 10 минут приводит к изменению ионного состава внутри клетки на 40 - 50 %.

Слайд 66 В покое мембрана не является абсолютно непроницаемой для

В покое мембрана не является абсолютно непроницаемой для любого вида ионов.

любого вида ионов. Диффузионные потоки, не будь им противодей­ствия,

рано или поздно выровняли бы состав по обе стороны мем­браны. Для восстановления и поддержания необходимой концентра­ции ионов внутри клетки в мембране содержится специальный аппа­рат, обеспечивающий их активный транспорт против градиента их собственной концентрации. Активный транспорт ионов Nа+, К+ и Са+ осуществляется двумя типами "насосов" Nа+ - К+ и Nа+ - Са2+.

Слайд 67 Наиболее характерная черта таких насосов - перенос вещества

Наиболее характерная черта таких насосов - перенос вещества против градиентов. Следовательно,

против градиентов. Следовательно, необходимо энергетическое обеспече­ние такого процесса. Организм

должен за счет своей свободной энергии преодолеть физико-химические градиенты, повернуть вспять движение веществ. Значит, второй особенностью активного транс­порта является наличие источника энергии для его осуществления. Причем эта энергия поступает из химических реакций

Слайд 68 Рассмотрим этот процесс на примере К+-Nа насоса. Ионы

Рассмотрим этот процесс на примере К+-Nа насоса. Ионы К+ и Nа+

К+ и Nа+ вводятся и выводятся из клетки и

в клетку против концен­трационного градиента. Клетка очень строго следит за содержанием в своей цитоплазме названных ионов

Слайд 70 При повышении концентрации ионов натрия активируется так

При повышении концентрации ионов натрия активируется так называемая калий-натрий зависимая

называемая калий-натрий зависимая АТФ-аза, этот фермент содержащийся в плазматической

мембране, активирует гидролиз АТФ.
Активируя гидролиз АТФ, он обеспечивает фосфорилирование переносчика, который выносит натрий из клетки. На внешней поверхности мембраны происходит ионный обмен натрия на калий внутри ферментного комплекса, после этого обмена белок-переносчик совершает обратный переворот с переносом калия внутрь клетки. Ион калия и неорганическая фосфатная группа (Р) освобождается от белка-переносчика, который в свою очередь возвращается в исходное состояние. Подсчитано, что за полный цикл 1 молекула АТФ обеспечи­вает перенос через клеточную мембрану 3 иона Na+ и 2 иона К+.

Слайд 71 Факторы, характеризующие систему активного транспорта.
1. Перенос веществ против

Факторы, характеризующие систему активного транспорта.1. Перенос веществ против электро-химических градиентов.2. Наличие

электро-химических градиентов.
2. Наличие источника энергии (АТФ).
3. Необходимость переносчика вещества

(молекула - белковой природы).
Присутствие фермента, который активирует этот процесс – транспортной АТФ-азы.
Однако вся эта система не работает до появления определенного стимула, которым обычно служит нарастающая концентрация транспортируемого вещества.

Слайд 72 Роль активного транспорта в физиологическом процессе
Активный транспорт необходим:

Роль активного транспорта в физиологическом процессе Активный транспорт необходим: Для поддержания


Для поддержания высокой концентрации ионов K+ внутри клетки, этим

самым он обеспечивает постоянство величины потенциала покоя (см. раздел 2.3.).
Для поддержания низкой концентрации ионов Na+ внутри клетки, что, с одной стороны, обеспечивает работу механизма генерации потенциала действия, а с другой стороны, обеспечивает сохранение нормальной осмолярности объема клетки (см. раздел 2.4.).
Поддерживая стабильный концентрационный градиент Na+, Na+ – K+ насос способствует напряженному транспорту аминокислот, сахаров через клеточную мембрану.

Слайд 73 БИОФИЗИКА КЛЕТКИ ЛЕКЦИЯ 2 Биоэлектрические потенциалы

БИОФИЗИКА КЛЕТКИ ЛЕКЦИЯ 2 Биоэлектрические потенциалы

Слайд 74 План лекции
1.Методы измерения потенциала
2.Модель Нернста
3. Потенциал покоя
4. Потенциал

План лекции 1.Методы измерения потенциала2.Модель Нернста3. Потенциал покоя4. Потенциал действия5. Распространение нервного импульса вдоль возбудимого волокна

действия
5. Распространение нервного импульса вдоль
возбудимого волокна


Слайд 75 1. Методы измерения мембранного потенциала.
Это явление лежит в

1. Методы измерения мембранного потенциала.Это явление лежит в основе возбудимости клеток,

основе возбудимости клеток, регуляции внутриклеточных процессов, работы нервной Одна

из важнейших функций биологической мембраны - генерация и передача биопотенциалов. системы, регуляции мышечного сокращения, рецепции. В медицине на исследовании электрических полей, созданных биопотенциалами органов и тканей, основаны диагностические методы: электрокардиография, электроэнцефалография, электромиография и другие. Практикуется и лечебное воздействие на ткани и органы внешними электрическими импульсами при электростимуляции.

Слайд 77 В процессе жизнедеятельности в клетках и тканях

В процессе жизнедеятельности в клетках и тканях могут возникать разности

могут возникать разности электрических потенциалов:
окислительно-восстановительные потенциалы - вследствие переноса

электронов от одних молекул к другим;
мембранные - вследствие градиента концентрации ионов и переноса ионов через мембрану.
Биопотенциалы, регистрируемые в организме, - это в основном мембранные потенциалы.

Слайд 78 Мембранным потенциалом называется разность потенциалов между внутренней (цитоплазматической)

Мембранным потенциалом называется разность потенциалов между внутренней (цитоплазматической) и наружной поверхностями

и наружной поверхностями мембраны:
.
В дальнейшем для упрощения написания формул

величину
будем обозначать просто как .

Слайд 79 Прогресс в исследовании биопотенциалов обусловлен:
разработкой микроэлектродного метода внутриклеточного

Прогресс в исследовании биопотенциалов обусловлен:разработкой микроэлектродного метода внутриклеточного измерения потенциалов; созданием

измерения потенциалов;
созданием специальных усилителей биопотенциалов (УПТ);
выбором удачных объектов

исследования крупных клеток и среди них гигантского аксона кальмара. Диаметр аксона кальмара достигает 0,5 мм, что в 100-1000 больше, чем диаметр аксонов позвоночных животных, в том числе человека. Гигантские, в сравнении с позвоночными, размеры аксона этого проворного и ловкого головоногого моллюска имеют большое физиологическое значение - обеспечивают быструю передачу нервного импульса по нервному волокну. Для биофизики гигантский аксон кальмара послужил великолепным модельным объектом для изучения биопотенциалов (недаром выдвигались предложения поставить памятник кальмару - животному, которому так многим обязана наука, подобно существующим памятникам лягушке в Париже и собаке под Санкт-Петербургом).

Слайд 80 В гигантский аксон кальмара можно ввести микроэлектрод, не

В гигантский аксон кальмара можно ввести микроэлектрод, не нанеся аксону значительных

нанеся аксону значительных повреждений.
Стеклянный микроэлектрод (1) представляет собой стеклянную

микропипетку с оттянутым очень тонким кончиком (диаметр 0,1-0,5 мкм).

Слайд 81 Металлический электрод такой толщины пластичен, и не может

Металлический электрод такой толщины пластичен, и не может проколоть клеточную мембрану,

проколоть клеточную мембрану, кроме того, он поляризуется. Для исключения

поляризации электрода используются неполяризующиеся электроды, например, серебряная проволока (3), покрытая солью , помещенные в раствор или , заполняющий микроэлектрод

Слайд 82 Второй электрод сравнения (4) - располагается в растворе

Второй электрод сравнения (4) - располагается в растворе (6) у наружной

(6) у наружной поверхности клетки (5) (рис. 11). Регистрирующее

устройство осциллограф.

Слайд 84 Микроэлектродный метод дал возможность измерить биопотенциалы не только

Микроэлектродный метод дал возможность измерить биопотенциалы не только на гигантском аксоне

на гигантском аксоне кальмара, но и на клетках нормальных

размеров: нервных волокнах других животных, клетках скелетных мышц, клетках миокарда и других

Слайд 87 Биопотенциалы, электрическая активность клеток животного и растительного происхождения,

Биопотенциалы, электрическая активность клеток животного и растительного происхождения, обусловленная неравномерным распределением

обусловленная неравномерным распределением электролитов внутри и вне клеток. Мембранный потенциал

(МП, потенциал покоя) определяется трансмембранным градиентом концентрации калия (К) (внутри клеток концентрация К выше) и остается постоянным длительное время, пока клетка не активируется внешним воздействием. При этом внутренняя часть клеток имеет отрицательный заряд. Переход клеток в активное состояние вызывается быстрым сдвигом МП в положительном направлении - потенциалом действия (ПД), для которого характерно несколько фаз: фаза деполяризации, обусловленная входом натрия (Na) внутрь клеток, вызывающим изменение поляризации клетки, - овершут; фаза реполяризации, в течение которой восстанавливается исходный потенциал вследствие выхода К из клеток; следовые (деполяризационные и гиперполяризационные) потенциалы. Постоянство и восстановление исходного распределения электролитов внутри клеток обеспечивается Na/K насосом. На рис. - временный ход потенциала действия.

Слайд 88 Другим эффективным методом измерения потенциала мембраны стал метод

Другим эффективным методом измерения потенциала мембраны стал метод локальной фиксации потенциала

локальной фиксации потенциала ("Patch Clamp"). Суть метода заключается в

том, что микроэлектрод тонким концом, имеющим диаметр 0,5-1 мкм, присасывается к мембране таким образом, чтобы в его внутренний диаметр попал ионный канал. Тогда, используя схему фиксации потенциала, можно измерять токи, которые проходят только через одиночный канал мембраны, а не через все каналы одновременно, как это происходит при использовании стандартного метода фиксации потенциала, описанного выше.

Слайд 89 2. Элемент Нернста
Самой простой и адекватной моделью является

2. Элемент НернстаСамой простой и адекватной моделью является элемент Нернста (Рис.12.).

элемент Нернста (Рис.12.). Сосуд, в котором находится растворы одной

и той же соли, но разной концентрации, разделен пористой перегородкой (C1 > C2).

Слайд 90 ). Вследствие разницы концентрации, ионы диффундируют, причем один

). Вследствие разницы концентрации, ионы диффундируют, причем один из ионов, как

из ионов, как правило, катион диффундирует быстрее и более

разбавленный раствор приобретает знак катиона. По обе стороны перегородки образуется разность потенциалов, которую называют диффузионной разностью потенциалов.

Слайд 91 При этом ЭДС, возникающая в концентрационном элементе, образованном

При этом ЭДС, возникающая в концентрационном элементе, образованном раствором одной соли,

раствором одной соли, определяется из уравнения Нернста.


- газовая постоянная (R=8,316 Дж/к-моль), - абсолютная температура,
- число Фарадея (96500 кл/моль),
n- валентность, С1 и С2 молекулярные концентрации ионов по обе стороны мембраны.



Слайд 92 Уравнение Нернста

Уравнение Нернста

Слайд 93 В реальных условиях, в клетке, разница скорости движения

В реальных условиях, в клетке, разница скорости движения анионов и

анионов и катионов обусловлена присутствием полупроницаемой мембраны. Без нее

ЭДС концентрированного элемента быстро падает. Поэтому потенциалы, возникающие в таком элементе, называются не диффузионными, а мембранными.

Слайд 94 Элемент Нернста

Элемент Нернста

Слайд 95 Теория электролитической диссоциации была впервые применена и объяснена

Теория электролитической диссоциации была впервые применена и объяснена в механизме биоэлектрогенеза

в механизме биоэлектрогенеза В.Ю.Чаговцем (1896) слушателям ВМА, в дальнейшем

развил учение Ю.Бернштейн и лауреаты Нобелевской премии (Ходжкин, Кац, Хакси).

Слайд 96 3. Потенциал покоя.
Установлено, что цитоплазма клеток существенно отличается

3. Потенциал покоя.Установлено, что цитоплазма клеток существенно отличается по химическому составу

по химическому составу от внеклеточной жидкости, находящейся в межклеточном

пространстве (рис. 13.)

Слайд 97 Ионы

Ионы       Среда

Среда

Внеклеточная Внутриклеточная


К 1 41
Na 10 1
Cl 13 1


Рис. 13. Относительная концентрация ионов внутри и вне клетки.

Слайд 99 Разность ионных концентраций создает силу, стремящуюся выров­нять содержание

Разность ионных концентраций создает силу, стремящуюся выров­нять содержание ионов, но мембрана

ионов, но мембрана препятствует этому процессу. Мембраны обес­печивают избирательную

проницаемость для различных ионов. Вследствие этого в тканях наблюдается неодинаковая скорость диффу­зии через клеточные мембраны катионов и анионов, что при нали­чии концентрационных градиентов служит непосредственной причиной возникновения мембранных потенциалов. Их называют биопотенциалами

Слайд 100 Таким образом, источником электричества в живой ткани служит

Таким образом, источником электричества в живой ткани служит концентрационный элемент, образованный

концентрационный элемент, образованный растворами электролита, имеющего неодинаковую концентрацию в

цитоплазме и межклеточной жидкостью. При рассмотрении живых тканей в качестве концентра­ционного элемента необходимо учитывать диффузию через клеточ­ную мембрану не одного иона, а всех, концентрации которых нео­динаковы внутри и вне клетки. Это обстоятельство учитывает уравнение Гольдмана-Ходжкина-Катца.

Слайд 101 уравнение Гольдмана-Ходжкина-Катца.

уравнение Гольдмана-Ходжкина-Катца.

Слайд 102 Уравнение Гольдмана позволяет рассчитать разность потенциалов, существующую в

Уравнение Гольдмана позволяет рассчитать разность потенциалов, существующую в разных клетках между

разных клетках между цитоплазмой и межклеточной средой в покое

и при возбуждении.

Слайд 103 Потенциал покоя - стационарная разность электрических потенциалов,

Потенциал покоя - стационарная разность электрических потенциалов, регистрируемая между внутренней

регистрируемая между внутренней и наружной поверхностями мембраны в невозбужденном

состоянии

Слайд 106 Потенциал покоя определяется разной концентрацией ионов по разные

Потенциал покоя определяется разной концентрацией ионов по разные стороны мембраны и

стороны мембраны и диффузией ионов через мембрану. Результаты расчетов

приблизительно совпадают с величинами мембранных потенциалов, полученными опытным путем

Слайд 108 Проанализируем уравнение Гольдмана в состояние покоя:
В состоянии покоя

Проанализируем уравнение Гольдмана в состояние покоя:В состоянии покоя проницаемость мембраны для

проницаемость мембраны для ионов значительно больше,

чем для , и больше,
чем для




Слайд 109 Для аксона кальмара, например,
Из уравнения Гольдмана

Для аксона кальмара, например, Из уравнения Гольдмана получим уравнение Нернста для мембранного потенциала покоя:;

получим уравнение Нернста для мембранного потенциала покоя:
;


Слайд 110 Таким образом, уравнение Нернста - частный случай уравнения

Таким образом, уравнение Нернста - частный случай уравнения Гольдмана. При концентрации

Гольдмана. При концентрации в клетке 20 мМ и аксоплазме

400 мМ рассчитанное значение равно - 95мВ. Действительно, в опытах на аксонах регистрируют потенциалы покоя около - 90мВ. Следовательно, в состоянии покоя мембранный потенциал (ПП) равен равновесному электрохимическому потенциалу по.

Слайд 112 Итак, все клетки в состоянии покоя характеризуются определенной

Итак, все клетки в состоянии покоя характеризуются определенной степенью поляризации. Клеточная

степенью поляризации. Клеточная мембрана всегда заряжена. ПП в различных

клетках различен и достигает нескольких десятков милливольт. У аксона кальмара ПП-85мВ, у нервных и мышечных волокон ПП-90мВ.

Слайд 114 4.Потенциал действия
Все клетки возбудимых тканей при действии

4.Потенциал действия Все клетки возбудимых тканей при действии различных раздражителей достаточной

различных раздражителей достаточной силы переходят в состояние возбуждения. Возбудимость

- это способность клеток к быстрому ответу на раздраже­ние, проявляющаяся через совокупность физических, физико-хими­ческих процессов и функциональных изменений

Слайд 115 Обязательным признаком возбуждения является изменение электрического состо­яния клеточной

Обязательным признаком возбуждения является изменение электрического состо­яния клеточной мембраны. Опыт показывает,

мембраны. Опыт показывает, что возбужденный участок клетки становится электроотрицательным

по отношению к невозбужденному, что указывает на перераспределение ионов в воз­бужденном участке. Оно имеет временный характер

Слайд 116 Общее изменение разности потенциалов между клеткой и средой,

Общее изменение разности потенциалов между клеткой и средой, происходящее при возбуждении, называется потенциалом действия

происходящее при возбуждении, называется потенциалом действия


Слайд 117 Потенциал действия (ПД), или потенциал возбуждения нервных клеток

Потенциал действия (ПД), или потенциал возбуждения нервных клеток (волокон), возникает в

(волокон), возникает в ответ на достаточное по силе раздражение.

ПД - очень быстрый, кратковременный электрический процесс, поэтому для его регистрации необходим катодный осциллограф с широкополосным усилителем.

Слайд 118 Классическое исследование параметров и механизма ПД проделано на

Классическое исследование параметров и механизма ПД проделано на гигантском аксоне кальмара

гигантском аксоне кальмара с внутриклеточным раздражением и отведением внутриклеточного

потенциала. В это нервное волокно (диаметром 0,5-1 мм) вводили на всю его длину два тончайших проволочных электрода. Один из них был раздражающим: через него в волокно подавали толчки тока того или иного направления, другой регистрировал электрический потенциал.

Слайд 119 При подаче короткого и слабого толчка выходящего тока

При подаче короткого и слабого толчка выходящего тока внутриклеточный электрод регистрировал

внутриклеточный электрод регистрировал кратковременное падение МП, по форме и

силе соответствующее толчку тока, но со сглаженными передним и задним фронтами, что определяется емкостью мембраны. Это так называемый локальный потенциал. Локальным он называется потому, что и в экспериментальных, и в естественных уровнях он не распространяется далеко

Слайд 121 . При усилении стимула и достижении порога раздражения,

. При усилении стимула и достижении порога раздражения, т.е. критического уровня

т.е. критического уровня деполяризации (КУД), возникает потенциал действия


Слайд 124 Перенос ионов через каналы биомембран

Перенос ионов через каналы биомембран

Слайд 125 В потенциале действия различают пик (спайк) и следовые

В потенциале действия различают пик (спайк) и следовые потенциалы.Пик ПД представляет

потенциалы.
Пик ПД представляет собой кратковременную инверсию (изменение знака на

положительный) внутриклеточного потенциала. Он имеет очень быструю восходящую фазу и несколько более медленный спад.

Слайд 126 Общая длительность пика в данном объекте составляет около

Общая длительность пика в данном объекте составляет около 3мс, амплитуда пика

3мс, амплитуда пика 120мВ, т.е. превышает МПП (90 мВ)

на 30 мВ. Эту разницу называют овершутом или амплитудой потенциала инверсии.

Слайд 127 Вслед за пиком ПД регистрируются значительно более

Вслед за пиком ПД регистрируются значительно более слабые и длительные

слабые и длительные отрицательный и далее положительный следовой потенциалы



Слайд 128 График изменения мембраного потенциала при разных воздействиях

График изменения мембраного потенциала при разных воздействиях

Слайд 129 .График потенциала действия
-

.График потенциала действия   - возбуждающий импульс от генератора положительный

возбуждающий импульс от генератора положительный (деполяризующий), но сдвиг мембранного

потенциала аксона ниже некоторого порогового значения ( критического уровня деполяризации –КУД )-возникает локальный потенциал (1) .
- амплитуда положительного.деполяризующего возбуждающего импульса приводит к сдвигу мембранного потенциала по значению выше порогового уровня, в мембране развивается генерация потенциала действия .

5. – при следовой гиперполяризации в течение 1-2 мс в мембране наблюдаются остаточные явления, во время которых мембрана остается рефракторной (невозбудимой).

Слайд 131 Потенциал действия имеет стандартные амплитуду и временные параметры,

Потенциал действия имеет стандартные амплитуду и временные параметры, не зависящие от

не зависящие от силы стимула, вызвавшего данный ПД (правило

"все или ничего").
Потенциал действия - это электрический феномен, возникающий на плазматической мембране. Практически нормальный ПД возникает и в перфузируемом гигантском аксоне, лишенном аксоплазмы, при электрической стимуляции его мембраны.

Слайд 133 Причиной развития ПД является вызываемое критической деполяризацией мембраны

Причиной развития ПД является вызываемое критической деполяризацией мембраны открытие ее натриевых

открытие ее натриевых и калиевых каналов. Каналы, открываемые электрическим

стимулом, называют потенциалзависимыми.

Слайд 134 Открытие потенциалзависимых каналов приводит к пассивному движению соответствующих

Открытие потенциалзависимых каналов приводит к пассивному движению соответствующих ионов по их

ионов по их электрохимическим градиентам.
Вход ионов в клетку обеспечивает

восходящую фазу пика ПД, т.е. деполяризацию и инверсию потенциала на мембране, а несколько запаздывающий выход ионов участвует в создании нисходящей фазы пика - реполяризации.

Слайд 135 При развитии пика ПД отношение становится (в покое

При развитии пика ПД отношение становится (в покое оно составляет ).

оно составляет ). Связь развития пика ПД с током

доказывается прямой зависимостью амплитуды ПД от электрохимического градиента на мембране и достоверным переходом меченого изотопа из среды в клетку при его возбуждении, причем в количестве, пропорциональном числу ПД. Связь нисходящей фазы ПД с током доказывается зависимостью хода этой фазы от электрохимического градиента на мембране.

Слайд 136 Рассмотрим локальный подпороговый ответ (ЛО) в нервной клетке.

Рассмотрим локальный подпороговый ответ (ЛО) в нервной клетке. Этот ответ обладает

Этот ответ обладает в основном тем же механизмом, что

и ПД. Его восходящая фаза определяется входящим током Na, а нисходящая - выходящим током .
Амплитуда ЛО пропорциональна силе раздражителя, а не стандартна, как у ПД, т.е. он не подчиняется правилу "все или ничего".

Слайд 137 Рассчитаем равновесный электрохимический потенциал для натрия при возбуждении:

Рассчитаем равновесный электрохимический потенциал для натрия при возбуждении: PNa+: PK+: PCl+=30:1:0,45	т.е.


PNa+: PK+: PCl+=30:1:0,45
т.е. по сравнению с невозбужденным состоянием при

возбуждении коэффициент проницаемости возрастает в 750 раз, т.к. , уравнение Гольдмана преобразуется в уравнение Нернста, и по нему можно рассчитать равновесный потенциал по натрию. Расчет по формуле Нернста.

Слайд 138 В опытах было доказано, что этот равновесный потенциал

В опытах было доказано, что этот равновесный потенциал по Na совпадает

по Na совпадает с амплитудным значением потенциала инверсии. ПИ

всегда положителен, но меньше по абсолютной величине, чем потенциал
покоя . ПД равен сумме ПП и ПИ

Слайд 139 Характерные свойства потенциала действия:
Наличие порогового значения деполяризующего потенциала.

Характерные свойства потенциала действия:Наличие порогового значения деполяризующего потенциала. Закон


Закон "все или ничего", т.е., если деполяризующий потенциал больше

порогового, развивается потенциал действия, амплитуда которого не зависит от амплитуды возбуждающего импульса и нет потенциала действия, если амплитуда деполяризующего потенциала меньше пороговой

Слайд 140 Наличие периода рефрактерности, невозбудимости мембраны во время развития

Наличие периода рефрактерности, невозбудимости мембраны во время развития потенциала действия и

потенциала действия и остаточных явлений после снятия возбуждения.
Резкое

уменьшение сопротивления мембраны в момент возбуждения (у аксона кальмара от 0,1 в покое до 0,0025 при возбуждении).

Слайд 141 Итак, генерация потенциала действия в возбужденных мембранах возникает

Итак, генерация потенциала действия в возбужденных мембранах возникает под влиянием различных

под влиянием различных факторов и сопровождается в первую очередь

повышением проводимости клеточной мембраны для ионов натрия, входом их внутрь клетки, что приводит к деполяризации клеточной мембраны и появлению локального ответа.

Слайд 142 . Этот процесс может достигнуть критического уровня деполяризации,

. Этот процесс может достигнуть критического уровня деполяризации, после чего проводимость

после чего проводимость мембраны для натрия увеличивается до максимума,

мембранный потенциал при этом приближается к натриевому равновесному потенциалу. Приблизительно через десять миллисекунд происходит инактивация натриевых каналов.

Слайд 143 Увеличивается активация калиевых каналов, что приводит к увеличению

Увеличивается активация калиевых каналов, что приводит к увеличению выходящего калиевого тока,

выходящего калиевого тока, который в свою очередь вызывает реполяризацию

и в дальнейшем восстановление потенциала покоя.

Слайд 144
Физиологическая роль ПД в потенциалзависимых клетках не

Физиологическая роль ПД в потенциалзависимых клетках не ограничивается только возбудимостью

ограничивается только возбудимостью клеточной мембраны и проведением нервного импульса.

Возникновение ПД сопровождает целый комплекс информационных процессов, которые развиваются в ответ на стимуляцию на фоне ПД. Среди этих процессов следует назвать такие как: 1) изменение обмена веществ, 2) саморегуляция температуры и электрического импеданса, а так же других важных физиологических констант организма.

Слайд 146 5. Распространение нервного импульса вдоль возбудимого волокна
Если в

5. Распространение нервного импульса вдоль возбудимого волокнаЕсли в каком-нибудь участке возбудимой

каком-нибудь участке возбудимой мембраны сформировался потенциал действия, мембрана деполяризована,

возбуждение распространяется на другие участки мембраны. Рассмотрим распространение возбуждения на примере передачи нервного импульса по аксону

Слайд 147 Локальные токи при распространении нервного импульса по нервному

Локальные токи при распространении нервного импульса по нервному волокну

волокну


Слайд 148 Положим, что один участок аксона находится в возбужденном

Положим, что один участок аксона находится в возбужденном состоянии, а соседний

состоянии, а соседний участок находится в покое. На границе

таких зон возникают перепады мембранных потенциалов: плюс на возбужденном и минус на покоящемся участках. Надо учесть, что и аксоплазма и внеклеточная жидкость являются растворами электролитов, а следовательно, проводящими средами.

Слайд 149 Поэтому и в аксоплазме, и в окружающем растворе

Поэтому и в аксоплазме, и в окружающем растворе возникают локальные токи:

возникают локальные токи: между участками поверхности мембраны с большим

потенциалом (положительно заряженными) и участками с меньшим потенциалом (отрицательно заряженными).

Слайд 150 Локальные токи образуются и внутри аксона, и

Локальные токи образуются и внутри аксона, и на наружной его

на наружной его поверхности. Локальные электрические токи приводят к

повышению потенциала внутренней поверхности невозбужденного участка мембраны и к понижению наружного потенциала невозбужденного участка мембраны, оказавшегося по соседству с возбужденной зоной

Слайд 151 Таким образом, в областях, близких к возбужденному участку,

Таким образом, в областях, близких к возбужденному участку, отрицательный потенциал покоя

отрицательный потенциал покоя повышается и становится выше порогового значения.

Под действием изменения мембранного потенциала открываются натриевые каналы и дальнейшее повышение происходит уже за счет потока ионов натрия через мембрану

Слайд 152 Происходит деполяризация мембраны, развивается потенциал действия. Затем возбуждение

Происходит деполяризация мембраны, развивается потенциал действия. Затем возбуждение передается дальше на покоящиеся участки мембраны

передается дальше на покоящиеся участки мембраны


Слайд 153 Может возникнуть вопрос, почему возбуждение распространяется по аксону

Может возникнуть вопрос, почему возбуждение распространяется по аксону не в обе

не в обе стороны от зоны, где возник нервный

импульс, ведь локальные токи текут в обе стороны от возбужденного участка. Дело в том, что возбуждение может распространятся только в область мембраны, находящуюся в состоянии покоя, то есть в одну сторону от возбужденного участка аксона. В другую сторону нервный импульс не будет распространятся, так как области, через которые прошло возбуждение, некоторое время остаются невозбудимыми – рефракторными.

Слайд 154 Эволюция животного мира привела к появлению нервных волокон,

Эволюция животного мира привела к появлению нервных волокон, покрытых миелиновой оболочкой,

покрытых миелиновой оболочкой, которая представляет собой многомембранную систему. Миелин

является изолятором, поэтому генерация ПД сосредоточена там, где миелиновая оболочка отсутствует, т.е. в перехватах Ранвье.
Аксоны позвоночных снабжены миелиновой оболочкой, которая увеличивает сопротивление мембраны и ее толщину

Слайд 155 Возбуждение по миелинизированному волокну распространяется сальтаторно (скачкообразно) от

Возбуждение по миелинизированному волокну распространяется сальтаторно (скачкообразно) от одного перехвата Ранвье

одного перехвата Ранвье (участка, свободного от миелиновой оболочки) до

другого.

  • Имя файла: biofizika-kletki.pptx
  • Количество просмотров: 170
  • Количество скачиваний: 1