Слайд 2
Задача 1.
В шахматном турнире принимали участие шесть партнеров
разных профессий: токарь, слесарь, инженер, учитель, врач, шофер.
Известно, что:
В
первом туре Андреев играл с врачом, учитель – с Борисовым, а Григорьев – с Евдокимовы: в первом туре 3 партии;
Во втором туре Дмитриев играл с токарем, а врач – с Борисовым; во втором туре 2 партии;
В третьем туре Евдокимов играл с инженером; в третьем туре 1 партия.
По окончании турнира места распределились так: Борисову присудили 1-е место, Григорьев и инженер поделили 2 и 3 места, Дмитриев занял
4 место, а Золотарев и слесарь поделили 5 и 6 места.
У кого какая профессия?
Слайд 3
1. Т.к. в первом туре 3 партии, то
врач не Андреев, не Борисов, не Григорьев, не Евдокимов.
Слайд 4
1. Т.к. в первом туре 3 партии, то
врач не Андреев, не Борисов, не Григорьев, не Евдокимов.
2.
Т.к. в втором туре 2 партии, то врач не Дмитриев. Значит, врач – Золотарев.
Слайд 5
1. Т.к. в первом туре 3 партии, то
врач не Андреев, не Борисов, не Григорьев, не Евдокимов.
2.
Т.к. в втором туре 2 партии, то врач не Дмитриев. Значит, врач – Золотарев.
3. Т.к. учитель не Андреев, не Борисов, не Григорьев, не Евдокимов (по усл.1) и не Золотарев, значит, учитель – Дмитриев.
Слайд 6
1. Т.к. в первом туре 3 партии, то
врач не Андреев, не Борисов, не Григорьев, не Евдокимов.
2.
Т.к. в втором туре 2 партии, то врач не Дмитриев. Значит, врач – Золотарев.
3. Т.к. учитель не Андреев, не Борисов, не Григорьев, не Евдокимов (по усл.1) и не Золотарев, значит, учитель – Дмитриев.
Слайд 7
1. Т.к. в первом туре 3 партии, то
врач не Андреев, не Борисов, не Григорьев, не Евдокимов.
2.
Т.к. в втором туре 2 партии, то врач не Дмитриев. Значит, врач – Золотарев.
3. Т.к. учитель не Андреев, не Борисов, не Григорьев, не Евдокимов (по усл.1) и не Золотарев, значит, учитель – Дмитриев.
4. Т.к. инженер не Евдокимов, не Борисов, не Григорьев (по усл.4) и не Золотарев или Дмитриев, значит, инженер – Андреев.
Слайд 8
1. Т.к. в первом туре 3 партии, то
врач не Андреев, не Борисов, не Григорьев, не Евдокимов.
2.
Т.к. в втором туре 2 партии, то врач не Дмитриев. Значит, врач – Золотарев.
3. Т.к. учитель не Андреев, не Борисов, не Григорьев, не Евдокимов (по усл.1) и не Золотарев, значит, учитель – Дмитриев.
4. Т.к. инженер не Евдокимов, не Борисов, не Григорьев (по усл.4) и не Золотарев или Дмитриев, значит, инженер – Андреев.
Слайд 9
1. Т.к. в первом туре 3 партии, то
врач не Андреев, не Борисов, не Григорьев, не Евдокимов.
2.
Т.к. в втором туре 2 партии, то врач не Дмитриев. Значит, врач – Золотарев.
3. Т.к. учитель не Андреев, не Борисов, не Григорьев, не Евдокимов (по усл.1) и не Золотарев, значит, учитель – Дмитриев.
5. Т.к. Борисов не слесарь (по усл.4) и не токарь (по усл.2), значит, он – шофер.
4. Т.к. инженер не Евдокимов, не Борисов, не Григорьев (по усл.4) и не Золотарев или Дмитриев, значит, инженер – Андреев.
Слайд 10
1. Т.к. в первом туре 3 партии, то
врач не Андреев, не Борисов, не Григорьев, не Евдокимов.
2.
Т.к. в втором туре 2 партии, то врач не Дмитриев. Значит, врач – Золотарев.
3. Т.к. учитель не Андреев, не Борисов, не Григорьев, не Евдокимов (по усл.1) и не Золотарев, значит, учитель – Дмитриев.
5. Т.к. Борисов не слесарь (по усл.4) и не токарь (по усл.2), значит, он – шофер.
4. Т.к. инженер не Евдокимов, не Борисов, не Григорьев (по усл.4) и не Золотарев или Дмитриев, значит, инженер – Андреев.
Слайд 11
1. Т.к. в первом туре 3 партии, то
врач не Андреев, не Борисов, не Григорьев, не Евдокимов.
2.
Т.к. в втором туре 2 партии, то врач не Дмитриев. Значит, врач – Золотарев.
3. Т.к. учитель не Андреев, не Борисов, не Григорьев, не Евдокимов (по усл.1) и не Золотарев, значит, учитель – Дмитриев.
5. Т.к. Борисов не слесарь (по усл.4), значит, он – шофер (по усл.4).
6. Т.к Григорьев не слесарь (по усл.4), значит, он токарь. Тогда остается, что слесарь – Евдокимов.
4. Т.к. инженер не Евдокимов, не Борисов, не Григорьев (по усл.4) и не Золотарев или Дмитриев, значит, инженер – Андреев.
Слайд 12
1. Т.к. в первом туре 3 партии, то
врач не Андреев, не Борисов, не Григорьев, не Евдокимов.
2.
Т.к. в втором туре 2 партии, то врач не Дмитриев. Значит, врач – Золотарев.
3. Т.к. учитель не Андреев, не Борисов, не Григорьев, не Евдокимов (по усл.1) и не Золотарев, значит, учитель – Дмитриев.
5. Т.к. Борисов не слесарь (по усл.4), значит, он – шофер (по усл.4).
6. Т.к Григорьев не слесарь (по усл.4), значит, он токарь. Тогда остается, что слесарь – Евдокимов.
4. Т.к. инженер не Евдокимов, не Борисов, не Григорьев (по усл.4) и не Золотарев или Дмитриев, значит, инженер – Андреев.
Слайд 13
Задача 2.
В санатории познакомились 5 офицеров: связист, танкист,
летчик, сапер и моряк. Один из них – полковник,
другой – капитан и трое – майоры. Оказалось, что
у Павла такое же звание, что и у его соседа по комнате сапера;
офицер-связист и Кирилл – большие друзья;
летчик вместе с Иваном и Алексеем уже однажды отдыхали вместе;
недавно Алексей по просьбе сапера и моряка помог связисту настроить ноутбук;
Кирилл чуть было не поступил в летное училище, но по совету друга-сапера выбрал другое училище;
Павел по званию старше Алексея, Иван по званию старше Кирилла;
одного из отдыхающих звали Андрей.
Нужно определить род войск каждого офицера и его звание.
Слайд 14
Строим таблицу и заполняем ее, анализируя каждое высказывание.
из
условия 3 следует, что Алексей – не летчик, из
усл.4 он – не сапер, не связист и не моряк, значит, Алексей – танкист;
из условий 2 и 5 следует, что Кирилл – не летчик, не сапер, не связист, и не танкист (доказали, это Алексей), значит, Кирилл – моряк;
из условия 1 следует, что 2 человека имеют одно и то же звание, значит, они – майоры, т.е. Павел – майор;
т.к. Павел по званию старше Алексея (усл.6), значит, Алексей – капитан;
т.к. Иван по званию старше Кирилла (усл.6), а Кирилл не капитан (доказали), значит, эта пара может быть только такой: Иван – полковник, а Кирилл – майор;
из заполненной таблицы следует, что Андрей – майор;
по усл.1 сапер имеет такое же звание, как Павел, т.е. сапер – майор, но это не Павел (усл.1), не Кирилл и не Алексей (доказано), не Иван, (доказано, что Иван полковник), значит, сапер – Андрей;
по усл.3 Иван – не летчик. Значит, он связист, а Павел – летчик.
Слайд 16
Задача 3.
Мама купила сыну 10 цветных карандашей и
разложила в цветные коробочки тех же цветов – белую,
черную, зеленую, синюю, красную по 2 штуки в каждую. Но не отдала сыну карандаши, а попросила отгадать загадку:
ни один карандаш не лежит в коробке того же цвета;
синие карандаши не лежат в красной коробке;
в черной коробке лежит по одному карандашу зеленого и синего цветов;
в одной коробке белого или черного цвета лежат один красный и один зеленый карандаш;
в синей коробочке есть один черный карандаш;
в одной из коробочек лежат вместе белый и синий карандаши.
Слайд 17
Строим таблицу и заполняем ее, анализируя каждое высказывание.
по
усл.1 ставим 0 в ячейки таблицы, где цвет коробки
и карандаша совпадает;
по усл.3 в черной коробке зеленый и синий карандаши;
т.к. содержимое черной коробки найдено на предыдущем шаге, то по усл.4 в белой коробке лежат красный и зеленый карандаши;
заполняем ячейки по усл.5 и усл.6;
по таблице определяем, в какой коробке могут лежать вместе белый и синий карандаши;
заполняем оставшиеся ячейки.
Слайд 19
Задача 4.
В восьмом классе учится 40 человек.
Каждый из них изучает не менее одного иностранного языка:
английский (А), немецкий (Н), французский (Ф). 34 человека изучают хотя бы один из двух языков: английский, немецкий. 25 человек — хотя бы один из языков: немецкий, французский. 6 человек только немецкий. Одновременно два языка — английский и немецкий — изучают на 3 человека больше, чем французский и немецкий языки. Сколько человек изучает каждый из языков и сколько изучает одновременно каждую пару языков?
При решении данной задачи, кроме кругов Эйлера, которые наглядно показывают решение, удобно применить составление уравнения по условию задачи.
Слайд 20
-
Составим и решим уравнение. Обозначим: х – изучают
Ф и Н.
(34 – х – 3 – 6
– х) + (х + 3) + 6 + х + (25 – х – 6 – х – 3) = 40 х = 5
Ф + Н = 5 человек. А + Н = 8 человек.
А = 34 – 8 – 6 – 5 =15 человек. Н = 6 человек.
Ф =25 – 5 – 6 – 8 = 6 человек.
Слайд 21
Задача 5.
Летом в спортивный лагерь пришло письмо:
«Здравствуйте! Мы узнали, что у вас будут проводиться спортивные
соревнования, и мы хотим участвовать в них. В состав нашей команды входят волейболисты, бегуны, прыгуны и метатели. Команда у нас сильная. Все бегуны являются и прыгунами, а все прыгуны являются или метателями, или бегунами. Одна из особенностей нашей команды состоит в том, что среди метателей, которые являются еще и прыгунами, нет бегунов. Метателей у нас в два раза меньше, чем прыгунов, и на два меньше, чем бегунов. Бегуны составляют третью всей часть, а волейболистов в два раза больше, чем тех ребят которые являются одновременно и прыгунами, и метателями. До скорой встречи!» сколько мест необходимо подготовить для этой команды?
Слайд 22
Х – вся команда
х/3 – бегуны
(х/3 – 2)
– метатели
2*(х/3 – 2) – прыгуны
2*(х/3 – 2) -
х/3 = х/3 – 4 – прыгуны и метатели
2*(х/3 – 4) – волейболисты
команда = бегуны + волейболисты + метатели
(часть прыгунов – бегуны, остальные – метатели)
х = х/3 + 2*(х/3 – 4) + (х/3 – 2) х = 30
Слайд 23
Задача 6.
Сборная команда страны по летнему многоборью отправилась
на сборы. Известно, что мужчин, занимающихся, плаванием, или мужчин,
занимающихся бегом, в команде 33 человека. Мужчин, которые и бегают, и плавают, 7 человек, а мужчин, занимающихся бегом, 18.
Сколько в команде мужчин, которые занимаются только плаванием?
Проанализируем условие задачи. Из нее следует, что в команде есть мужчины-пловцы, мужчины-бегуны и мужчины, занимающиеся и бегом, и плаванием.
Построим круги Эйлера, введем обозначения количества спортсменов по видам спорта.