Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему по математике на тему Задачи на доказательство (6 класс, внеурочная деятельность).

Задача №1АМ – биссектриса треугольника АВС.Сторона АВ больше стороны АС.Докажите, что ВМ больше СМ и угол ВМА больше угла СМА.
«Задачи на доказательство»Внеурочная деятельность по математике.Выполнила: учитель МБОУ Бурмакинской СОШ № 1 Короткова О. М. Задача №1АМ – биссектриса треугольника АВС.Сторона АВ больше стороны АС.Докажите, что ВМ Решение задачи №1АВ/АС больше 1 .По свойству биссектрисы АВ : АС = Задача №2Через вершину А треугольника АВС проведена прямая, перпендикулярная биссектрисе угла А, Решение задачи №2Построим точку С1, симметричную С относительно прямой АННС1 = НС, Задача №3Две стороны треугольника не равны друг другу.Докажите, что медиана, проведённая из Решение задачи № 3Достройте треугольник до параллелограмма, продлив медиану.Рассмотрите треугольник, образованный медианой, Задача №4Внутри треугольника АВС взята такая точка К, что точка А равноудалена Решение задачи №4Продолжим ВК до пересечения с АС. Пусть это будет точка
Слайды презентации

Слайд 2 Задача №1
АМ – биссектриса треугольника АВС.
Сторона АВ больше

Задача №1АМ – биссектриса треугольника АВС.Сторона АВ больше стороны АС.Докажите, что

стороны АС.
Докажите, что ВМ больше СМ и угол ВМА

больше угла СМА.

Слайд 3 Решение задачи №1
АВ/АС больше 1 .
По свойству биссектрисы

Решение задачи №1АВ/АС больше 1 .По свойству биссектрисы АВ : АС

АВ : АС = ВМ : МС;
Тогда МВ/МС больше

1 и МВ больше МС.
Продлим сторону АС так, чтобы АВ1 = АВ.
В равнобедренном треугольнике АВ1В биссектриса АН является высотой, угол ВМН – острый, тогда угол АМВ – тупой и он больше смежного угла АМС.

Слайд 4 Задача №2
Через вершину А треугольника АВС проведена прямая,

Задача №2Через вершину А треугольника АВС проведена прямая, перпендикулярная биссектрисе угла

перпендикулярная биссектрисе угла А, а из вершины С проведён

перпендикуляр СН к этой прямой.
Докажите, что периметр треугольника ВСН больше периметра треугольника АВС.

Слайд 5 Решение задачи №2
Построим точку С1, симметричную С относительно

Решение задачи №2Построим точку С1, симметричную С относительно прямой АННС1 =

прямой АН
НС1 = НС, АС1 = АС.
АМ – биссектриса,

поэтому угол ВАС1 – развёрнутый.
ВА + АС1 < ВН + НС1 (длина отрезка меньше длины ломаной, соединяющей его концы).
ВА + АС1 + ВС < ВН + НС1 + ВС.

Слайд 6 Задача №3
Две стороны треугольника не равны друг другу.
Докажите,

Задача №3Две стороны треугольника не равны друг другу.Докажите, что медиана, проведённая

что медиана, проведённая из их общей вершины, составляет с

меньшей из сторон больший угол.

Слайд 7 Решение задачи № 3
Достройте треугольник до параллелограмма, продлив

Решение задачи № 3Достройте треугольник до параллелограмма, продлив медиану.Рассмотрите треугольник, образованный

медиану.
Рассмотрите треугольник, образованный медианой, её продолжением и двумя смежными

сторонами треугольника.
Против большей стороны будет лежать больший угол.

Слайд 8 Задача №4
Внутри треугольника АВС взята такая точка К,

Задача №4Внутри треугольника АВС взята такая точка К, что точка А

что точка А равноудалена от точки К и точки

В.
Докажите, что АС больше АВ.

  • Имя файла: prezentatsiya-po-matematike-na-temu-zadachi-na-dokazatelstvo-6-klass-vneurochnaya-deyatelnost.pptx
  • Количество просмотров: 130
  • Количество скачиваний: 0