Приведение к новому знаменателю. Мы можем привести к новому
знаменателю абсолютно любую дробь. Возьмем например несократимую дробь ½. Ее числитель и знаменатель мы умножим на 3. В результате получим дробь 3/6. Выполнение этих действий с любой дробью и называется приведением к новому знаменателю. Дробь можно привести к любому новому знаменателю кратному его исходному знаменателю. Число, на которое мы умножаем дробь называют дополнительным множителем дроби.
Полезные качества свойства:
Полезное это свойство дроби тем, что только дроби с одинаковыми (общими) знаменателями можно складывать и вычитать. Поэтому часто нам необходимо привести дроби к общему знаменателю.
Иногда дроби приводят к наименьшему общему знаменателю. Можно привести дроби ¾ и 5/6 к наименьшему общему знаменателю. Итак, наименьшим общим кратным этих чисел является 12. Чтобы привести дроби к наименьшему общему знаменателю нужно
Найти наименьшее общее кратное их знаменателей.
Разделить наименьший общий знаменатель на знаменатели дробей (т.е. найти дополнительный множитель)
Умножить числитель и знаменатель каждой дроби на дополнительный множитель.
Таким образом: ¾=9/12, а 5/6=10/12.