FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.
Email: Нажмите что бы посмотреть
Решение: По условию задачи а1 + а3 = 268; а2 + а4 = 316, найти требуется а1, а2, а3, а4, а5
Составим и решим систему уравнений, используя формулу ап = а1+ d(п-1)
Подставив полученные значения в формулу ап = а1+ d(п-1), найдем остальные значения
а2 = 134, а3 = 158, а4 = 182, а5 = 206
Ответ: 110, 134, 158, 182, 206
Решение: По условию задачи а1 = 100, d = 20, Sn:n = 220, а найти требуется n.
По формуле:
значит Sn :n = (2а1+ d(п-1)):2
220 = (2·100 + 2(п-1)):2
440 = 200 + 2п – 2
п = 13
Ответ: 13
Решение: По условию задачи а1 = 100, d = 3, n = 19, значит найти требуется S19.
По формуле:
Ответ: 2413
Решение: Первое тело движется равномерно, и поэтому путь, пройденный этим телом, вычисляется по формуле: S=V·t. Движение второго тела подчиняется законам арифметической прогрессии где а1 = 3, d = 5
Поэтому
необходимо найти t.
Из условия задачи получаем уравнение:
5t2 + 21t -153 =0
t1=6, t2= -10,2
Второй корень не удовлетворяет условию t
Ответ: 6
Решение: Бактерия была одна, следовательно, b1=1. Она делится на две, значит q=2, а так как время деления полчаса, то за 10 часов произойдет 20 делений и нам нужно найти b21
По формуле bп= b1 ·qn1
b21 = 1·220 =1048576 ≈ 1,05·106
Ответ: 10,5·106
Решение: Из условия задачи получаем, что b1=760; q=0,83; n = 16, а найти необходимо b16 .
По формуле bп= b1 ·qn1 , значит:
b16=760 ·0,8315 ≈ 46,45
Ответ: 46,45
Решение: По условию задачи b1=5; b3=9,8; n = 5, значит нам необходимо найти b2, b4, b5
Для решения применим формулы: q= bn+1 : bn , bп= b1 ·qn1,
По условию задачи
для того, чтобы найти остальные значения, найдем q,
q=b2 : b1 = 7:5 = 1,4
b4 = 9,8 ·1,4 = 13,72
b5 = 13,72 ·1,4 = 19,208
Ответ: 7; 13,72; 19,208
Решение: За один год банк выплатит S1 = b1 + b1 q=b1 ·(1+q),
где b1- вклад, q- процентная ставка.
За 2 года S2 =S1+S1q = S1 (1+q), но S1=b1·(1+q), следовательно, S2=b1·(1+q)2.
Тогда за n лет Sn = b1·(1+q)n
Найдем по этой формуле S4 , S4 = b1·(1+q)4
10000·(1+2%:100%)4 = 10000 · 1,02 4 = 10824,32
10824 руб. 32 коп.
Ответ:10824,32
Решение: 1 день-1 руб, 2 день-1·1,5 руб, 3 день-1·1,5·1,5 руб. Получаем геометрическую прогрессию, где b1=1; q=1,5.
Соответствие дней и членов геометрической прогрессии следующее:
12 декабря-b1 , 13 декабря-b2 ,…, 19 декабря-b8 . Получилось n = 8.
Применим формулу суммы:
посчитаем S8
S8 = 1·(1,581) = 49,26 ≈ 49 (руб)
Ответ: 49