Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Готовимся к ОГЭ №3 (Текстовые задачи 2 часть) 9 класс

Содержание

Если вы хотите научиться плавать, то смело входите в воду, а если хотите научиться решать задачи, то решайте их!
ГОТОВИМСЯ Если вы хотите научиться плавать,  то смело входите в воду, а Содержание Памятки по решению различных задачПриведено решение – 8 задачДля самостоятельной работы – 7 задач Памятка при решении задач на движениеПуть = скорость · времяПри движении по Памятка для решения задач на процентыПроцентом числа называется его сотая часть. Например: Памятка для решения задач на концентрацию, смеси, сплавы.концентрация(доля чистого вещества в смеси)-количество Памятка при решении задач на работу-время работы-объем работы-производительностьОбъем работы = время работы · производительность При смешивании первого раствора кислоты, концентрация которого 20%, и второго раствора этой Решаем уравнение:  1/5·х + 1/2·у = 3/10·(х + у) 1/5·х + При смешивании первого раствора кислоты, концентрация которого 40%, и второго раствора этой Теплоход плывёт из А в В двое суток, из В в А В геометрической прогрессии сумма первого и второго членов равна 84, а сумма продолжение84q + 84q² - 112 – 112q = 084q² - 28q-112=0 |:283q² В геометрической прогрессии сумма первого и второго членов равна 40, а сумма Теплоход проходит по течению до пункта назначения 126 км и после стоянки (х+2)(х-2) ≠ 0     х ≠ - 2 и Теплоход проходит по течению реки до пункта назначения160 км и после стоянки На изготовление 180 деталей первый рабочий тратит на 3 часа меньше, чем х (х + 3) ≠ 0х ≠ 0 ; х ≠ - Бассейн наполняется двумя трубами, действующими одновременно, за 2 часа.За сколько часов может Туристы на моторной лодке прошли 1 час по течению реки, после чего ×2 Знаем, что S = v·t  и 30 минут = ½ Туристы на моторной лодке прошли 2 часа против течения реки, после чего Из города А в город В выехала грузовая машина. Спустя 1,2 часа Составим уравнение по условию задачи:    0,8х + 24 = Из города А в город В выехал автобус, Спустя 0,5 часа вслед Теплоход идет по течению реки в 5 раз медленнее, чем скутер против + Составим систему уравнений по условию задачи:+ -4х = - 16а Теплоход идёт по течению реки в 2 раза медленнее, чем скутер против Интернет-ресурсыФон: http://www.flywebtech.com/images/bg.jpg Компьютер: http://moodle.belmont.gloucs.sch.uk/file.php/1/ICT_2.png  Автор шаблона: Ранько Елена Алексеевна, учитель начальных
Слайды презентации

Слайд 2
Если вы хотите научиться плавать,
то смело

Если вы хотите научиться плавать, то смело входите в воду, а

входите в воду, а если хотите научиться решать задачи,


то решайте их!
(Д. Пойа)

Слайд 3 Содержание
Памятки по решению различных задач
Приведено решение – 8

Содержание Памятки по решению различных задачПриведено решение – 8 задачДля самостоятельной работы – 7 задач

задач
Для самостоятельной работы – 7 задач


Слайд 4 Памятка при решении задач на движение
Путь = скорость ·

Памятка при решении задач на движениеПуть = скорость · времяПри движении

время
При движении по реке:
Скорость по течению = собственная скорость

транспорта + скорость течения реки
Скорость против течения = собственная скорость транспорта - скорость течения реки

Слайд 5 Памятка для решения задач на проценты
Процентом числа называется

Памятка для решения задач на процентыПроцентом числа называется его сотая часть.

его сотая часть.
Например:
1% от числа 500 –

это число 5.
-нахождение процента от числа:
Найти 3 % от числа 500;15 % от числа 60.
-нахождение числа по его процентам:
Найти число, 12% которого равны 30.
-нахождение % отношения чисел:
Сколько % составляет 120 от 600?


Слайд 6 Памятка для решения задач на концентрацию, смеси, сплавы.
концентрация(доля

Памятка для решения задач на концентрацию, смеси, сплавы.концентрация(доля чистого вещества в

чистого вещества в смеси)
-количество чистого вещества в смеси
-масса смеси.

масса смеси · концентрация = количество чистого вещества.


Слайд 7 Памятка при решении задач на работу
-время работы
-объем работы
-производительность

Объем

Памятка при решении задач на работу-время работы-объем работы-производительностьОбъем работы = время работы · производительность

работы = время работы · производительность


Слайд 8 При смешивании первого раствора кислоты, концентрация которого 20%,

При смешивании первого раствора кислоты, концентрация которого 20%, и второго раствора

и второго раствора этой же кислоты, концентрация которого 50%,

получился раствор, содержащий 30% кислоты. В каком отношении были взяты первый и второй растворы?

Решение.
20%=1/5

30%=3/10
50%=1/2
Составим уравнение:
1/5 ·х + 1/2·у = 3/10·(х + у)




х

у

х + у

получили


Слайд 9
Решаем уравнение: 1/5·х + 1/2·у = 3/10·(х

Решаем уравнение: 1/5·х + 1/2·у = 3/10·(х + у) 1/5·х +

+ у)
1/5·х + 1/2·у = 3/10·х +

3/10·у
1/5·х - 3/10·х = 3/10·у - 1/2·у
х (1/5 - 3/10) = у (3/10 - 1/2 )
Надо найти отношение первого и второго растворов, т.е. как х : у, поэтому уравнение делим на у:
Получаем: х/у ·(-1/10) = -1/5
х/у = (-1/5) : (-1/10) = -1/5 · (-10/1) = + 2
Значит х : у = 2:1
Ответ: 2:1

Слайд 10 При смешивании первого раствора кислоты, концентрация которого 40%,

При смешивании первого раствора кислоты, концентрация которого 40%, и второго раствора

и второго раствора этой же кислоты, концентрация которого 48%,

получился раствор, содержащий 42% кислоты. В каком отношении были взяты первый и второй растворы?

Решение.
(самостоятельно)

Ответ: 2:1


Слайд 11 Теплоход плывёт из А в В двое суток,

Теплоход плывёт из А в В двое суток, из В в

из В в А трое суток. Сколько суток плывет из

А в В плот?

Решение: если S – путь из А в В
х – собственная скорость теплохода
у – скорость течения реки,
то время движения плота равно S/у
Т.к. S = (х+у)·2 и S = (х-у)·3
составим уравнение: 2х+2у = 3х-3у
-х = -5у; х = 5у
Значит S = 2х+2у = 2·5у+2у = 12у
Тогда S/у = 12у : у = 12
Ответ: 12 суток


Слайд 12 В геометрической прогрессии сумма первого и второго членов

В геометрической прогрессии сумма первого и второго членов равна 84, а

равна 84, а сумма второго и третьего членов равна

112. Найдите первые три члена этой прогрессии.

Решение. по условию задачи
но (по опред.геом.прог.) а2= а1·q; а3= а1·q²,
тогда






Слайд 13 продолжение




84q + 84q² - 112 – 112q =

продолжение84q + 84q² - 112 – 112q = 084q² - 28q-112=0

0
84q² - 28q-112=0 |:28
3q² - q – 4 =

0
т.к. а-в+с=0, то q1=-1
(не подходит по ОДЗ)
q2=4/3
Найдем




1+q ≠ 0
q ≠ -1





Ответ: 36; 48; 64


Слайд 14 В геометрической прогрессии сумма первого и второго членов

В геометрической прогрессии сумма первого и второго членов равна 40, а

равна 40, а сумма второго и третьего равна 60.

Найдите первые три члена этой прогрессии.

Решение.
самостоятельно в парах.


Ответ: 16; 24; 36


Слайд 15 Теплоход проходит по течению до пункта назначения 126

Теплоход проходит по течению до пункта назначения 126 км и после

км и после стоянки возвращается в пункт отправления. Найдите

собственную скорость теплохода, если скорость течения реки равна 2 км/ч, стоянка длится 8 часов, а в пункт отправления теплоход возвращается ровно через сутки после отплытия из него. Ответ дайте в км/ч.

Решение.
Пусть х – км/ч собственная скорость теплохода
(х+2) – скорость по течению
(х-2) – скорость против течения
т.к. 8 часов длилась стоянка, то (24-8)=16 часов время движения.


Слайд 16 (х+2)(х-2) ≠ 0
х

(х+2)(х-2) ≠ 0   х ≠ - 2 и х

≠ - 2 и х ≠ 2
Составим уравнение по

условию задачи:


(х+2)(х-2) ≠ 0
х ≠ - 2 и х ≠ 2


126х – 252 + 126х + 252 = 16х² - 64
126х – 252 + 126х + 252 - 16х² + 64 = 0
-16х² + 252х + 64 = 0 |: (-4)
4х² - 63х – 16 = 0
D = 63² -4·4·(-16)= 3969+256=4225=65²


х1 = 128 : 8 = 16
х2 = -2 : 8 <0 (не подходит)

Ответ: 16 км/ч

Проверка.


Слайд 17 Теплоход проходит по течению реки до пункта назначения160

Теплоход проходит по течению реки до пункта назначения160 км и после

км и после стоянки возвращается в пункт отправления. Найдите

скорость течения, если скорость теплохода в неподвижной воде равна 18 км/ч, стоянка длится 2 часа, а в пункт отправления теплоход возвращается ровно через 20 часов после отплытия из него. Ответ дайте в км/ч.

Решение.
самостоятельно в парах.

Ответ: 2


Слайд 18 На изготовление 180 деталей первый рабочий тратит на

На изготовление 180 деталей первый рабочий тратит на 3 часа меньше,

3 часа меньше, чем второй. Сколько деталей в час

делает второй рабочий, если известно, что первый за час делает на 3 детали больше.

Решение.
Пусть х – производительность (дет./час) второго рабочего, тогда
(х+3) – производительность первого рабочего
Значит



Слайд 19 х (х + 3) ≠ 0
х ≠ 0

х (х + 3) ≠ 0х ≠ 0 ; х ≠

; х ≠ - 3
Составим уравнение по условию задачи:

х

(х + 3) ≠ 0
х ≠ 0 ; х ≠ - 3

180х + 3х² + 9х = 180х + 540
3х² + 9х – 540 = 0 | : 3
х² + 3х – 180 = 0
D = 9 - 4·(- 180) =9 + 720 = 729 = 27²


х1 = 24: 2 = 12
х2 = -30 : 2 < 0 (не подходит)

Проверка.

Ответ: производительность второго рабочего 12 деталей в час


Слайд 20 Бассейн наполняется двумя трубами, действующими одновременно, за 2

Бассейн наполняется двумя трубами, действующими одновременно, за 2 часа.За сколько часов

часа.За сколько часов может наполнить бассейн первая труба, если

она, действуя одна, наполняет бассейн на 3 часа быстрее, чем вторая?

Решение.
самостоятельно в парах.

Ответ: 3


Слайд 21 Туристы на моторной лодке прошли 1 час по

Туристы на моторной лодке прошли 1 час по течению реки, после

течению реки, после чего выключили мотор и плыли по

течению реки ещё 30 минут. Затем они, включив мотор, повернули обратно и через 3 часа после этого прибыли к месту старта. Во сколько раз скорость течения реки меньше собственной скорости лодки.

Решение.
Пусть х –км/ч собственная скорость лодки
у – скорость течения реки
Тогда (х+у) - скорость лодки по течению
(х-у) – скорость лодки против течения
Надо найти х:у?


Слайд 22 ×2
Знаем, что S = v·t и

×2 Знаем, что S = v·t и 30 минут = ½

30 минут = ½ часа,
Путь лодки по течению:

S = (х+у)·1+у·1/2
Путь лодки против течения: S = (х-у)·3
Т.к. путь один и тот же, то составим уравнение:



×2

2х + 2у + у = 6х – 6у
2х – 6х = -3у -6у
-4х = - 9у (делим на у)


Значит:


Ответ: в 2,25 раз….


Слайд 23 Туристы на моторной лодке прошли 2 часа против

Туристы на моторной лодке прошли 2 часа против течения реки, после

течения реки, после чего повернули обратно и 12 минут

шли по течению, выключив мотор. Затем они включили мотор и через 1 час после этого прибыли к месту старта. Во сколько раз скорость течения реки меньше собственной скорости лодки?

Решение.
самостоятельно в парах.

Ответ: 3,2


Слайд 24 Из города А в город В выехала грузовая

Из города А в город В выехала грузовая машина. Спустя 1,2

машина. Спустя 1,2 часа из пункта А вслед за

ней выехал автобус. Через 0,8 часа после своего выезда он отставал от машины на 24 км. Найдите скорость автобуса, если известно, что она больше скорости грузовой машины на 30 км/ч.

Решение.
Пусть х – км/ч скорость автобуса, тогда
(х-30) – скорость грузовой машины.
Время движения автобуса:
Время движения машины:
Путь, пройденный автобусом: 0,8 · х
Путь, пройденный машиной: 2 · (х-30)




Слайд 25
Составим уравнение по условию задачи:

Составим уравнение по условию задачи:  0,8х + 24 = 2(х-30)0,8х

0,8х + 24 = 2(х-30)
0,8х + 24 = 2х

– 60
0,8х – 2х = - 24 – 60
- 1,2х = - 84
12х = 840
х = 840 : 12 = 70
Проверка (по условию задачи).
Ответ: скорость автобуса 70 км/ ч

Слайд 26 Из города А в город В выехал автобус,

Из города А в город В выехал автобус, Спустя 0,5 часа

Спустя 0,5 часа вслед за ним из пункта А

выехал автомобиль. Через 1,1 часа после своего выезда он, обогнав автобус, находился на расстоянии 2 км от него. Найдите скорость автобуса, если известно, что она на 20 км/ч меньше скорости автомобиля.

Решение.
самостоятельно в парах.

Ответ: 40


Слайд 27 Теплоход идет по течению реки в 5 раз

Теплоход идет по течению реки в 5 раз медленнее, чем скутер

медленнее, чем скутер против течения, а по течению скутер

идёт в 9 раз быстрее, чем теплоход против течения. Во сколько раз собственная скорость скутера больше собственной скорости теплохода?

Решение.
Пусть х –собственная скорость теплохода
у – собственная скорость скутера
а – скорость течения реки
Надо найти ?



Слайд 28 +
Составим систему уравнений по условию задачи:



+

+ Составим систему уравнений по условию задачи:+ -4х = - 16а

-4х = - 16а
х = 4а


если у + а = 9х - 9а, то у = 9х – 10а
Найдем у: у = 9·4а – 10а = 26а
Найдем :



Ответ: в 6,5 раза ….


Слайд 29 Теплоход идёт по течению реки в 2 раза

Теплоход идёт по течению реки в 2 раза медленнее, чем скутер

медленнее, чем скутер против течения, а по течению скутер

идёт в 4 раза быстрее, чем теплоход против течения. Во сколько раз собственная скорость скутера больше собственной скорости теплохода?

Решение.
самостоятельно в парах.


Ответ: в 2,75 раза


  • Имя файла: gotovimsya-k-oge-n3-tekstovye-zadachi-2-chast-9-klass.pptx
  • Количество просмотров: 113
  • Количество скачиваний: 0