FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.
Email: Нажмите что бы посмотреть
Рассмотрим примеры графов, изображенных на рисунке
χ(G)=max{χ(G1), χ(G2),…, χ(Gc)}.
Аналогичное утверждение справедливо и для компонент двусвязности.
Доказательство проведем индукцией по числу блоков. Можно считать, что G – связный граф.
Если граф содержит один блок, то утверждение теоремы, очевидно, справедливо. Предположим, что теорема справедлива для любых графов, имеющих не более k блоков. Пусть граф G имеет k+1 блок. Зафиксируем один из концевых блоков графа G. Этот блок обозначим через В, а объединение остальных блоков – через В' . Графы В и В’ имеют точно одну общую вершину а (которая является точкой сочленения графа G). По предположению индукции графы В и В’ можно правильно раскрасить k красками. Если вершина а в обоих графах В и В’ окрашена одинаково, то в результате получаем правильную раскраску графа G. Если вершина а в графах В и В’ окрашена по-разному, то очевидным образом перекрашиваем граф В так, чтобы новая краска вершины а совпадала с краской этой вершины в графе В’.
Рассмотрим граф G с множеством вершин V. Две различные вершины v и v’ графа G смежны тогда и только тогда, когда для выполнения работ v и v’ требуется хотя бы один общий ресурс. Наименьшее время выполнения всех работ равно χ(G)·t. Оптимальная раскраска графа G определяет распределение ресурсов.