Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Статистические гипотезы. Параметрические критерии. (Лекция 5)

Содержание

План лекции:1. Критерии проверки статистических гипотез2. Параметрические критерии: Критерий Стьюдента, Критерий Фишера3. Непараметрические критерии: Хи-квадрат, критерий Колмогорова-Смирнова, Критерий знаков, Критерий Мана-Уитни, критерий Уилка-Шапиро и др.4. Применение статистических критериев в анализе почвенных данных
Лекция 6Тема: «Статистические гипотезы» План лекции:1. Критерии проверки статистических гипотез2. Параметрические критерии: Критерий Стьюдента, Критерий Фишера3. Основные понятия:Нулевая гипотеза Альтернативная гипотезаОшибки первого    и второго рода Уровень значимости Этапы проверки статистических гипотезФормулировка основной гипотезы H0 и конкурирующей гипотезы H1. Гипотезы Статистическая гипотеза - некоторое предположение о свойствах генеральной совокупности, которой принадлежит выборка. Нулевая гипотеза (Н0) - предположение о том, что между генеральными параметрами сравниваемых Если выборка из совокупности 1 имеет параметры µ1 и σ1, а выборка Нулевая гипотеза может иметь в виду µ=α, где α- какое-то число. Альтернативная (противоположная) гипотеза – противопоставляется нулевой гипотезе и исходит из того, что:µ1-µ2≠0 и σ1-σ2≠0 Критерии проверки гипотез:Число степеней свободы (k) – числа, показывающие количество свободно варьирующих Критерии значимостиПараметрическиеКритерий Стьюдента(t) Критерий Фишера(F)НепараметрическиеКритерийХи-квадрат(χ²) КритерийКолмогорова-Смирнова (d)Критерий знаков(z)Критерий Мана-Уитни (U)Критерий Уилка-Шапиро (W)Т-критерий Уилксона (T) Параметрические критерии строятся на основе параметров выборочной совокупностиНепараметрические критериифункции от вариант данной совокупности с их частотами Область значений случайной величиныОбласть допустимых значенийОбласть маловероятных значений Критическое значение – соответствует границе между областью допустимых и областью маловероятных значений. Выделяют три вида критических областей:Двусторонняя критическая область определяется двумя интервалами, где находят Ошибка первого рода Уровень значимости характеризует ту вероятность, которой решено пренебрегать в Ошибка второго родаПринятие нулевой гипотезы, когда она неверна, носит название ошибки второго Уменьшая вероятность ошибки первого рода (α), мы неизбежно увеличиваем вероятность ошибки второго Параметрические критерии Распределение Стьюдента (или t-распределение) - это распределение отклонений нормально распределенной случайной величины Классическим примером распределения Стьюдента является распределение стандартизованных отклоненийгде: х - нормально распределенное Кривая распределения Стьюдента похожа по внешнему виду на кривую нормального распределения: она Кривые нормального распределения  (Z -сплошная линия) и распределения t-Cтьюдента при ν=3 (пунктирная линия) Наибольшее отличие распределения Стьюдента от нормального наблюдается при ν=1, когда при значениях t – распределение – частный случай нормального распределения; t – распределение – Сравнение средних арифметических корреляционно не связанных между собой выборок, взятых из нормально Нулевая гипотеза опровергается (Н0), если tф≥tst для принятого уровня значимости и числа степеней свободы k=n1+n2-2. Распределение F Фишера. Распределение представляющее собой случайную величину, распределение которой было изучено Если имеются две оценки S1² и S2² одной и той же дисперсии С увеличением v1 и ν2 обе оценки стремятся к одному и тому Распределение F зависит от числа степеней свободы ν1 и ν2, с которыми Если выборки взяты из разных совокупностей с неравными параметрами σ1² и σ2², Непараметрические критерии Распределение Хи-квадрат (χ2(n))Допустим, что случайная величина Z распределена нормально с параметрами . Основные свойства критерия:Случайная величина χ2, будучи суммой квадратов, всегда положительна и должна Вид кривой распределения существенно зависит от числа слагаемых, точнее, от числа независимых Кривые распределения хи- квадрат с различным числом степеней свободы Так как закон распределения известен, то не составляет большого труда вычислить критические Для выборок равного объема, n1=n2 и N= n1+n2 Для выборок разного объема, n1≠n2 При сравнении эмпирического и теоретического распределения формула используют формулу U-критерий Манна-Уитни (англ. Mann-Whitney U test) — непараметрический статистический критерий, используемый для Простой непараметрический критерий. Метод определяет, достаточно ли мала зона перекрещивающихся значений между Для применения U-критерия Манна-Уитни нужно произвести следующие операции: 1. Составить единый ранжированный 2. Разделить единый ранжированный ряд на два, состоящие соответственно из единиц первой 3. Определить значение U-критерия Манна-Уитни по формуле: 4. По таблице для избранного уровня статистической значимости определить критическое значение критерия 5. При справедливости нулевой гипотезы критерий имеет матожидание и дисперсию и при Ограничения применимости критерия 1. В каждой из выборок должно быть не менее Критерий Колмогорова -СмирноваВ статистике критерий согласия Колмогорова (также известный, как критерий согласия Критерий Колмогорова-Смирнова о проверке гипотезы об однородности двух эмпирических законов распределения является Максимальная по модулю разность между соответствующими накопленными относительными частотами является фактическим значением критерия Колмогорова-Смирнова. Теоретическое значение критерия Колмогорова Смирнова вычисляется по формуле: Спасибо за внимание!
Слайды презентации

Слайд 2

План лекции:

1. Критерии проверки статистических гипотез

2. Параметрические критерии:

План лекции:1. Критерии проверки статистических гипотез2. Параметрические критерии: Критерий Стьюдента, Критерий

Критерий Стьюдента, Критерий Фишера

3. Непараметрические критерии: Хи-квадрат, критерий Колмогорова-Смирнова,

Критерий знаков, Критерий Мана-Уитни, критерий Уилка-Шапиро и др.


4. Применение статистических критериев в анализе почвенных данных



Слайд 3 Основные понятия:
Нулевая гипотеза
Альтернативная гипотеза
Ошибки первого

Основные понятия:Нулевая гипотеза Альтернативная гипотезаОшибки первого  и второго рода Уровень значимости

и второго рода
Уровень значимости







Слайд 4 Этапы проверки статистических гипотез
Формулировка основной гипотезы H0 и

Этапы проверки статистических гипотезФормулировка основной гипотезы H0 и конкурирующей гипотезы H1.

конкурирующей гипотезы H1. Гипотезы должны быть чётко формализованы в

математических терминах.
Задание вероятности α, называемой уровнем значимости и отвечающей ошибкам первого рода, на котором в дальнейшем и будет сделан вывод о правдивости гипотезы.
Расчёт статистики φ критерия такой, что:
её величина зависит от исходной выборки ;
по её значению можно делать выводы об истинности гипотезы H0;
сама статистика φ должна подчиняться какому-то известному закону распределения, т.к. сама φ является случайной в силу случайности .
Построение критической области. Из области значений φ выделяется подмножество таких значений, по которым можно судить о существенных расхождениях с предположением. Его размер выбирается таким образом, чтобы выполнялось равенство . Это множество и называется критической областью.
Вывод об истинности гипотезы. Наблюдаемые значения выборки подставляются в статистику φ и по попаданию (или непопаданию) в критическую область выносится решение об отвержении (или принятии) выдвинутой гипотезы H0.


Слайд 5
Статистическая гипотеза - некоторое предположение о свойствах генеральной

Статистическая гипотеза - некоторое предположение о свойствах генеральной совокупности, которой принадлежит выборка.

совокупности, которой принадлежит выборка.


Слайд 6
Нулевая гипотеза (Н0) - предположение о том, что

Нулевая гипотеза (Н0) - предположение о том, что между генеральными параметрами

между генеральными параметрами сравниваемых групп разница равна нулю, или

различия между выборочными показателями носят случайный характер



Слайд 7 Если выборка из совокупности 1 имеет параметры µ1

Если выборка из совокупности 1 имеет параметры µ1 и σ1, а

и σ1, а выборка из совокупности 2 соответственно µ2σ2,

то:



µ1=µ2, σ1=σ2
и
µ1-µ2=0, σ1-σ2 =0


Слайд 8 Нулевая гипотеза может иметь в виду µ=α, где

Нулевая гипотеза может иметь в виду µ=α, где α- какое-то число.

α- какое-то число.


Слайд 9 Альтернативная (противоположная) гипотеза – противопоставляется нулевой гипотезе и

Альтернативная (противоположная) гипотеза – противопоставляется нулевой гипотезе и исходит из того, что:µ1-µ2≠0 и σ1-σ2≠0

исходит из того, что:
µ1-µ2≠0
и
σ1-σ2≠0





Слайд 10 Критерии проверки гипотез:
Число степеней свободы (k) – числа,

Критерии проверки гипотез:Число степеней свободы (k) – числа, показывающие количество свободно

показывающие количество свободно варьирующих элементов или членов статистической совокупности,

способных принимать любые произвольные значения.

Уровень значимости (α) – значение вероятности, при котором различия, наблюдаемые между выборочными показателями, можно считать несущественными, случайными.



Слайд 11 Критерии значимости

Параметрические
Критерий Стьюдента
(t)


Критерий Фишера
(F)





Непараметрические
Критерий
Хи-квадрат
(χ²)



Критерий
Колмогорова-Смирнова (d)


Критерий знаков
(z)


Критерий

Критерии значимостиПараметрическиеКритерий Стьюдента(t) Критерий Фишера(F)НепараметрическиеКритерийХи-квадрат(χ²) КритерийКолмогорова-Смирнова (d)Критерий знаков(z)Критерий Мана-Уитни (U)Критерий Уилка-Шапиро (W)Т-критерий Уилксона (T)

Мана-Уитни (U)


Критерий
Уилка-Шапиро (W)

Т-критерий Уилксона (T)












Слайд 12
Параметрические критерии
строятся на основе параметров выборочной совокупности


Непараметрические

Параметрические критерии строятся на основе параметров выборочной совокупностиНепараметрические критериифункции от вариант данной совокупности с их частотами

критерии
функции от вариант данной совокупности с их частотами


Слайд 13 Область значений случайной величины
Область допустимых значений

Область маловероятных значений

Область значений случайной величиныОбласть допустимых значенийОбласть маловероятных значений

Слайд 14 Критическое значение – соответствует границе между областью допустимых

Критическое значение – соответствует границе между областью допустимых и областью маловероятных

и областью маловероятных значений.

Устанавливается в зависимости от принятого

уровня значимости (α). Критерии проверки гипотез



Слайд 15 Выделяют три вида критических областей:
Двусторонняя критическая область определяется

Выделяют три вида критических областей:Двусторонняя критическая область определяется двумя интервалами, где

двумя интервалами, где находят из условий .
Левосторонняя критическая

область определяется интервалом , где xα находят из условия P(φ < xα) = α.
Правосторонняя критическая область определяется интервалом , где xα находят из условия P(φ > xα) = α.


Слайд 16 Ошибка первого рода
Уровень значимости характеризует ту вероятность, которой

Ошибка первого рода Уровень значимости характеризует ту вероятность, которой решено пренебрегать

решено пренебрегать в данном исследовании.

Отклонение нулевой гипотезы при

попадании значения случайной величины в критическую область нельзя рассматривать как доказательство того, что гипотеза неверна, так как значения, выходящие за пределы области принятия гипотезы Но могут иметь место и в случае правильности нуль-гипотезы, и вероятность такого события известна - она равна α.

Отклоняя правильную нулевую гипотезу, мы допускаем так называемую ошибку первого рода, принятый же уровень значимости α характеризует риск допустить такую ошибку.




Слайд 17 Ошибка второго рода
Принятие нулевой гипотезы, когда она неверна,

Ошибка второго родаПринятие нулевой гипотезы, когда она неверна, носит название ошибки

носит название ошибки второго рода. Вероятность такой ошибки обозначается

( β ).

С вероятностью 1 - β принятия нулевой гипотезы, когда она верна, связывается в математической статистике понятие мощность критерия.



Слайд 18 Уменьшая вероятность ошибки первого рода (α), мы неизбежно

Уменьшая вероятность ошибки первого рода (α), мы неизбежно увеличиваем вероятность ошибки

увеличиваем вероятность ошибки второго рода (β).
Выбор уровня значимости

α (устанавливается обычно α, а не β) определяется условиями проведения эксперимента, ответственностью выводов и учетом того, ошибка какого рода наиболее нежелательна.
В большинстве случаев принимают α = 0,05 (5%), что соответствует доверительной вероятности Р = 0,95.

Слайд 19

Параметрические критерии

Параметрические критерии

Слайд 20 Распределение Стьюдента (или t-распределение) - это распределение отклонений

Распределение Стьюдента (или t-распределение) - это распределение отклонений нормально распределенной случайной

нормально распределенной случайной величины от генерального среднего, нормированных выборочной

оценкой среднего квадратического отклонения.
Это распределение зависит от числа степеней свободы γ, с которым найдена оценка среднего квадратического отклонения.

Слайд 21 Классическим примером распределения Стьюдента является распределение стандартизованных отклонений
где:

Классическим примером распределения Стьюдента является распределение стандартизованных отклоненийгде: х - нормально

х - нормально распределенное выборочное среднее;
µ- генеральное среднее; Sх

- ошибка среднего, вычисленная по выборке объема n,
t - значение случайной величины, распределенной по Стьюденту с ν= n - 1 числом степеней свободы.


Слайд 22 Кривая распределения Стьюдента похожа по
внешнему виду на

Кривая распределения Стьюдента похожа по внешнему виду на кривую нормального распределения:

кривую нормального распределения: она одновершинна, симметрична, ее ветви асимптотически

приближаются к оси абсцисс.
При ν ->∞ распределение Стьюдента стремится к нормальному распределению с параметрами µ = 0 и σ = 1.



Слайд 23 Кривые нормального распределения (Z -сплошная линия) и распределения

Кривые нормального распределения (Z -сплошная линия) и распределения t-Cтьюдента при ν=3 (пунктирная линия)

t-Cтьюдента при ν=3 (пунктирная линия)


Слайд 24 Наибольшее отличие распределения Стьюдента от нормального наблюдается при

Наибольшее отличие распределения Стьюдента от нормального наблюдается при ν=1, когда при

ν=1, когда при значениях переменной величины t, близких к

среднему, плотность вероятности распределения Стьюдента меньше, а при значениях, сильно отличающихся от среднего, больше, чем при нормальном распределении.

Слайд 26
t – распределение – частный случай нормального распределения;

t – распределение – частный случай нормального распределения; t – распределение


t – распределение – симметрично;
t – распределение отражает специфику

распределения малой выборки по нормальному закону.

Слайд 28 Сравнение средних арифметических корреляционно не связанных между собой

Сравнение средних арифметических корреляционно не связанных между собой выборок, взятых из

выборок, взятых из нормально распределяющихся совокупностей с их параметрами

µ1σ1² µ2σ2² исходят из предположения , что разница между ними возникла случайно (d=x1-X2). В качестве критерия проверки гипотезы служит переменная величина:

Слайд 29
Нулевая гипотеза опровергается (Н0), если tф≥tst для принятого

Нулевая гипотеза опровергается (Н0), если tф≥tst для принятого уровня значимости и числа степеней свободы k=n1+n2-2.

уровня значимости и числа степеней свободы k=n1+n2-2.


Слайд 30 Распределение F Фишера.
Распределение представляющее собой случайную величину,

Распределение F Фишера. Распределение представляющее собой случайную величину, распределение которой было

распределение которой было изучено Фишером, названо его именем и

обозначено буквой F.


Слайд 31
Если имеются две оценки S1² и S2² одной

Если имеются две оценки S1² и S2² одной и той же

и той же дисперсии σ² нормально распределенной случайной величины,

то, принимая, что S1²>S2², можно найти отношение этих оценок. При этом всегда берется отношение большей дисперсии к меньшей:


Слайд 32
С увеличением v1 и ν2 обе оценки стремятся

С увеличением v1 и ν2 обе оценки стремятся к одному и

к одному и тому же параметру σ², F при

этом стремится к единице.
Чем меньше ν1 и ν2, тем больше шансов получить в случайном порядке достаточно отличные от единицы значения F.

Слайд 33


Распределение F зависит от числа степеней свободы ν1

Распределение F зависит от числа степеней свободы ν1 и ν2, с

и ν2, с которыми найдены оценки дисперсий в числителе

(ν1) и в знаменателе (ν2).

Слайд 35
Если выборки взяты из разных совокупностей с неравными

Если выборки взяты из разных совокупностей с неравными параметрами σ1² и

параметрами σ1² и σ2², то Fф≥Fst и нулевая гипотеза

должна быть опровергнута (Н0).

Слайд 36

Непараметрические критерии


Непараметрические критерии

Слайд 37 Распределение Хи-квадрат (χ2(n))
Допустим, что случайная величина Z распределена

Распределение Хи-квадрат (χ2(n))Допустим, что случайная величина Z распределена нормально с параметрами

нормально с параметрами . Если взять n случайных значений

z и найти сумму их квадратов, то полученная сумма будет представлять собой значение некоторой случайной величины, обозначаемой χ2 (хи-квадрат):


Слайд 38 Основные свойства критерия:
Случайная величина χ2, будучи суммой квадратов,

Основные свойства критерия:Случайная величина χ2, будучи суммой квадратов, всегда положительна и

всегда положительна и должна зависеть от числа слагаемых.

Величина

χ2 может принимать значения от 0 до ∞.

Слайд 39 Вид кривой распределения существенно зависит от числа слагаемых,

Вид кривой распределения существенно зависит от числа слагаемых, точнее, от числа

точнее, от числа независимых слагаемых, т.е. от числа степеней

свободы ν. При очень малых ν распределение сильно асимметрично, но асимметрия быстро уменьшается по мере увеличения числа степеней свободы. Для распределения χ2 среднее число равно числу степеней свободы, а дисперсия - удвоенному числу степеней свободы:

Слайд 40 Кривые распределения хи- квадрат с различным числом степеней

Кривые распределения хи- квадрат с различным числом степеней свободы

свободы


Слайд 41
Так как закон распределения известен, то не составляет

Так как закон распределения известен, то не составляет большого труда вычислить

большого труда вычислить критические значения χα2, случайно превысить которые

при заданном ν можно с вероятностью α.


Слайд 42 Для выборок равного объема, n1=n2 и N= n1+n2

Для выборок равного объема, n1=n2 и N= n1+n2

Слайд 43 Для выборок разного объема, n1≠n2

Для выборок разного объема, n1≠n2

Слайд 44 При сравнении эмпирического и теоретического распределения формула используют

При сравнении эмпирического и теоретического распределения формула используют формулу

формулу


Слайд 46 U-критерий Манна-Уитни (англ. Mann-Whitney U test) — непараметрический

U-критерий Манна-Уитни (англ. Mann-Whitney U test) — непараметрический статистический критерий, используемый


статистический критерий, используемый для оценки различий между двумя выборками

по уровню какого-либо признака, измеренного количественно. Позволяет выявлять различия в значении параметра между малыми выборками. Другие названия: критерий Манна-Уитни-Уилкоксона (англ. Mann-Whitney-Wilcoxon, MWW), критерий суммы рангов Уилкоксона (англ. Wilcoxon rank-sum test) или критерий Уилкоксона-Манна-Уитни (англ. Wilcoxon-Mann-Whitney test).


Слайд 47 Простой непараметрический критерий. Метод определяет, достаточно ли мала

Простой непараметрический критерий. Метод определяет, достаточно ли мала зона перекрещивающихся значений

зона перекрещивающихся значений между двумя рядами (ранжированным рядом значений

параметра в первой выборке и таким же во второй выборке).

Чем меньше значение критерия, тем вероятнее, что различия между значениями параметра в выборках достоверны.


Слайд 48 Для применения U-критерия Манна-Уитни нужно произвести следующие операции:
1.

Для применения U-критерия Манна-Уитни нужно произвести следующие операции: 1. Составить единый

Составить единый ранжированный ряд из обеих сопоставляемых выборок, расставив

их элементы по степени нарастания признака и приписав меньшему значению меньший ранг. Общее количество рангов получится равным: N = n1 + n2, где n1 — количество единиц в первой выборке, а n2 — количество единиц во второй выборке.


Слайд 49 2. Разделить единый ранжированный ряд на два, состоящие

2. Разделить единый ранжированный ряд на два, состоящие соответственно из единиц

соответственно из единиц первой и второй выборок. Подсчитать отдельно

сумму рангов, пришедшихся на долю элементов первой выборки, и отдельно — на долю элементов второй выборки. Определить большую из двух ранговых сумм (Tx), соответствующую выборке с nx единиц.


Слайд 50 3. Определить значение U-критерия Манна-Уитни по формуле:

3. Определить значение U-критерия Манна-Уитни по формуле:

Слайд 51
4. По таблице для избранного уровня статистической значимости

4. По таблице для избранного уровня статистической значимости определить критическое значение

определить критическое значение критерия для данных n1 и n2.

Если полученное значение U меньше табличного или равно ему, то признается наличие существенного различия между уровнем признака в рассматриваемых выборках (принимается альтернативная гипотеза). Если же полученное значение U больше табличного, принимается нулевая гипотеза. Достоверность различий тем выше, чем меньше значение U.


Слайд 52 5. При справедливости нулевой гипотезы критерий имеет матожидание

5. При справедливости нулевой гипотезы критерий имеет матожидание и дисперсию и

и дисперсию и при достаточно большом объёме выборочных данных

(n1>19, n2>19) распределён практически нормально.


Слайд 54 Ограничения применимости критерия
1. В каждой из выборок должно

Ограничения применимости критерия 1. В каждой из выборок должно быть не

быть не менее 3 значений признака. Допускается, чтобы в

одной выборке было два значения, но во второй тогда не менее пяти.
2. В выборочных данных не должно быть совпадающих значений (все числа - разные) или таких совпадений должно быть очень мало.

Слайд 55 Критерий Колмогорова -Смирнова
В статистике критерий согласия Колмогорова (также

Критерий Колмогорова -СмирноваВ статистике критерий согласия Колмогорова (также известный, как критерий

известный, как критерий согласия Колмогорова-Смирнова) используется для того, чтобы

определить, подчиняются ли два эмпирических распределения одному закону, либо определить, подчиняется ли полученное распределение предполагаемой модели.
Критерий Колмогорова-Смирнова о проверке гипотезы об однородности двух эмпирических законов распределения является одним из основных и наиболее широко используемых непараметрических методов, так как достаточно чувствителен к различиям в исследуемых выборках.


Слайд 56 Критерий Колмогорова-Смирнова о проверке гипотезы об однородности двух

Критерий Колмогорова-Смирнова о проверке гипотезы об однородности двух эмпирических законов распределения

эмпирических законов распределения является одним из основных и наиболее

широко используемых непараметрических методов, так как достаточно чувствителен к различиям в исследуемых выборках.


Слайд 57 Максимальная по модулю разность между соответствующими накопленными относительными

Максимальная по модулю разность между соответствующими накопленными относительными частотами является фактическим значением критерия Колмогорова-Смирнова.

частотами является фактическим значением критерия Колмогорова-Смирнова.


Слайд 58 Теоретическое значение критерия Колмогорова Смирнова вычисляется по формуле:

Теоретическое значение критерия Колмогорова Смирнова вычисляется по формуле:

  • Имя файла: statisticheskie-gipotezy-parametricheskie-kriterii-lektsiya-5.pptx
  • Количество просмотров: 112
  • Количество скачиваний: 1