Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Золотое сечение в математике и в жизни

Содержание

« В геометрии существует два сокровища – теорема Пифагора и деление отрезка в крайнем и среднем отношении. Первое можно сравнить с ценность золота, второе можно назвать драгоценным камнем».
Золотое сечениев математикеи в жизниВыполнила: Богомолова Оксана, ученица 11А класса МОУ СОШ « В геометрии существует два сокровища – теорема Пифагора и деление отрезка Задачи1. Более подробно рассмотреть понятие «золотое сечение», история происхождения, алгебраическое нахождение «золотого ЦельВоспользовавшись различной литературой по геометрии, черчению, различными справочными материалами для более подробного Геометрическое определение Деление отрезка прямой по золотому сечениюАBCDEBC=1/2 AB Золотая порпорция в частях тела человека Построение золотого треугольника 36°AOCOOOdOBPbd1aПостроение .Применение в живописи. Построение второго золотое сечение45°45°ABCDE62384456ED:EA=56:44 Применение Применение Приложение ПарфенонЗолотое сечение в архитектуреДворец культуры г.Нелидово Дорифор Золотое сечение в скульптуре Ещё ничего не зная о природе звуков, человек интуитивно подстраивал струны Золотое сечение в биологииЦветки и семена подсолнуха, ромашки, чешуйки в плодах ананаса, Золотое сечение в живописиНа знаменитой картине И.И.Шишкина «Сосновая роща» с очевидностью Золотое сечение в физикеУскорение силы тяжести при удалении от земной поверхности описывается Золотое сечение в построении снежинокЗолотое сечение присутствует в строении всех кристаллов, но
Слайды презентации

Слайд 2 « В геометрии существует два сокровища – теорема

« В геометрии существует два сокровища – теорема Пифагора и деление

Пифагора и деление отрезка в крайнем и среднем отношении.

Первое можно сравнить с ценность золота, второе можно назвать драгоценным камнем».
Иоганн Кеплер

Слайд 3 Задачи
1. Более подробно рассмотреть понятие «золотое сечение», история

Задачи1. Более подробно рассмотреть понятие «золотое сечение», история происхождения, алгебраическое нахождение

происхождения, алгебраическое нахождение «золотого сечения», геометрическое построение «золотого сечения».
2.

Рассмотреть применение «золотого сечения» в архитектуре Древней Греции.
3. Рассмотреть «золотое сечение» как гармоническую пропорцию.
4. Изучить такие понятия как «второе золотое сечение», «золотой треугольник».
5. Постараться найти в окружающем меня мире применение этих понятий.


Слайд 4 Цель
Воспользовавшись различной литературой по геометрии, черчению, различными справочными

ЦельВоспользовавшись различной литературой по геометрии, черчению, различными справочными материалами для более

материалами для более подробного изучения темы «золотое сечение», дать

наиболее полное представление о данной теме; рассмотреть применение «золотого сечения» в архитектуре городов Тверской области.


Слайд 5 Геометрическое определение
"золотого сечения"
A
B
D
C
Золотое сечение – это такое пропорциональное

Геометрическое определение

деление отрезка на неравные части, при котором весь отрезок

так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.

- Золотое сечение


Слайд 6 Деление отрезка прямой
по золотому сечению
А
B
C
D
E
BC=1/2 AB

Деление отрезка прямой по золотому сечениюАBCDEBC=1/2 AB

Слайд 7 Золотая порпорция в
частях тела человека

Золотая порпорция в частях тела человека

Слайд 8 Построение золотого
треугольника

36°
A
O
C
O
O
O
d
O
B
P
b
d1
a
Построение .
Применение в живописи.

Построение золотого треугольника 36°AOCOOOdOBPbd1aПостроение .Применение в живописи.

Слайд 9 Построение второго
золотое сечение
45°
45°
A
B
C
D
E
62
38
44
56
ED:EA=56:44

Построение второго золотое сечение45°45°ABCDE62384456ED:EA=56:44

Слайд 10 Применение "золотого" сечения
в архитектуре города Нелидова
Дворец Культуры

Применение

Слайд 11 Применение "золотого" сечения
в архитектуре города Старицы
Успенский собор
Церковь

Применение

Иоанна Богослова


Слайд 12 Приложение

Приложение

Слайд 13 Парфенон
Золотое сечение в архитектуре
Дворец культуры г.Нелидово

ПарфенонЗолотое сечение в архитектуреДворец культуры г.Нелидово

Слайд 14 Дорифор
Золотое сечение в скульптуре

Дорифор Золотое сечение в скульптуре

Слайд 15 Ещё ничего не зная о природе звуков,

Ещё ничего не зная о природе звуков, человек интуитивно подстраивал

человек интуитивно подстраивал струны так, чтобы они создавали благозвучие.

Пифагору принадлежит математическое объяснение основ гармонии; по его определению, наиболее естественно воспринимаются человеком частоты, которые находятся между собой в простых числовых отношениях. Вот откуда и отношение частот в октаве 1: 2, и благозвучное трезвучие с отношением частот 4: 5: 6. Уменьшая последовательно длины струн, мы получим природный звукоряд из 16 звуков, но почему же древние музыканты приняли звукоряд, состоящий из семи основных звуков, и лишь позже добавили еще пять дополнительных (так появились черные клавиши в пианино).Значение работ Пифагора по научному объяснению основ музыкальной гармонии трудно переоценить. Это была первая научно обоснованная теория гармонии в музыке. Познав истинность и красоту своей музыкальной теории, Пифагор пытался распространить ее на космологию; по его представлениям, и планеты Солнечной системы располагались в соответствии с музыкальной октавой. Эта гипотеза Пифагора не потеряла своей привлекательности и в более поздние времена.

Золотое сечение в музыке


Слайд 16 Золотое сечение в биологии
Цветки и семена подсолнуха, ромашки,

Золотое сечение в биологииЦветки и семена подсолнуха, ромашки, чешуйки в плодах

чешуйки в плодах ананаса, хвойных шишках "упакованы" по логарифмическим

спиралям, завивающимся навстречу друг другу. Причем числа "правых "и "левых " спиралей, всегда относятся друг к другу, как соседние числа Фибоначчи В формулах листорасположения (филлотаксис) многих растений встречаются числа Фибоначчи, расположенные строго закономерно - через одно, например, орешник -1/3, дуб, вишня - 2/5, облепиха-5/13

Слайд 17 Золотое сечение в живописи
На знаменитой картине И.И.Шишкина «Сосновая

Золотое сечение в живописиНа знаменитой картине И.И.Шишкина «Сосновая роща» с очевидностью

роща» с очевидностью просматриваются мотивы золотого сечения. Ярко

освещенная солнцем сосна (стоящая
на первом плане) делит длину картины по золотому сечению. Справа от сосны - освещённыйсолнцем пригорок. Он делит по золотому сечению правую часть картины по горизонтали. Слева от главной сосны находится множество сосен - при желании можно с успехом продолжить деление картины
по золотому сечению и дальше.


Слайд 18 Золотое сечение в физике
Ускорение силы тяжести при удалении

Золотое сечение в физикеУскорение силы тяжести при удалении от земной поверхности

от земной поверхности описывается следующей формулой:

где h - высота

над поверхностью Земли, R - ее радиус. При опускании тела в глубь Земли характер зависимости g от h меняется:

Когда gh=g-h? Ясно, что одним из решений будет h=0. Второе решение таково:

Мы видим в решении уже знакомую нам формулу золотого сечения.


  • Имя файла: zolotoe-sechenie-v-matematike-i-v-zhizni.pptx
  • Количество просмотров: 99
  • Количество скачиваний: 0