Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Решаем задание №20 (базовый уровень)

Содержание

Условие:Из книги выпало несколько идущих подряд листов. Номер последней страницы перед выпавшими листами — 498, номер первой страницы после выпавших листов записывается теме же цифрами, но в другом порядке. Сколько листов выпало из книги?
Решаем задание №20  (базовый уровень)Выполнила: учитель математики муниципального бюджетного образовательного учреждения Условие:Из книги выпало несколько идущих подряд листов. Номер последней страницы перед выпавшими Решение:1) В первую очередь узнаем номер первой страницы после выпавших листов.Из цифр 2. Условие:Из книги выпало несколько идущих подряд листов. Номер последней страницы перед Решение:1)В первую очередь узнаем номер первой страницы после выпавших листов.Из цифр числа 3. Условие:Хозяин договорился с рабочими, что они выкопают ему колодец на следующих Решение:Хозяин должен будет заплатить рабочим за колодец глубиной 6 метров:3800 + (3800 4. Условие:Список за­да­ний вик­то­ри­ны со­сто­ял из 50 вопросов. За каж­дый пра­виль­ный ответ Решение:Пусть ученик дал Х — правильных ответов, У — неправильных ответов (У В итоге имеем следующую систему с тремя переменными: Из второго уравнения: 9Х 5. Условие:Взяли несколько досок и распилили их. Всего сделали 10 поперечных распилов, Решение:Возьмем одну доску и распилим её 10-ью поперечными распилами. В итоге получим 6. Условие:Взяли несколько досок и распилили их. Всего сделали 5 поперечных распилов, 7. Условие:Десять столбов соединены между собой проводами так, что от каждого столба 8. Условие:В ма­га­зи­не бы­то­вой тех­ни­ки объём про­даж хо­ло­диль­ни­ков носит се­зон­ный характер. В Решение:Определим объём продаж холодильников в каждом месяце: январь — 10; февраль — Вариант 1:1. Условие:Список за­да­ний вик­то­ри­ны со­сто­ял из 33 вопросов. За каж­дый пра­виль­ный 1. Ответ: 222. Ответ: 113. Ответ: 211. Ответ: 162. Ответ: 53. Ответ: 28Ответы:Вариант 1:Вариант 2:
Слайды презентации

Слайд 2 Условие:

Из книги выпало несколько идущих подряд листов. Номер

Условие:Из книги выпало несколько идущих подряд листов. Номер последней страницы перед

последней страницы перед выпавшими листами — 498, номер первой

страницы после выпавших листов записывается теме же цифрами, но в другом порядке. Сколько листов выпало из книги?


Слайд 3 Решение:
1) В первую очередь узнаем номер первой страницы

Решение:1) В первую очередь узнаем номер первой страницы после выпавших листов.Из

после выпавших листов.
Из цифр числа 498 можно составить следующие

возможные комбинации чисел: 489, 894, 849, 948, 984.
Страница 489 нам не подходит, так как меньше 498, а этого быть не может.
Мы знаем, что первая страница в книге после выпавших листов будет всегда нечетной, поэтому 894, 948 и 984 нам так же не подходят.
Вывод: первая страница после выпавших листов — 849.
2)Определим количество выпавших страниц:
849 — 498 — 1 = 350 страниц.
3)Осталось узнать, сколько листов выпало из книги:
350 : 2 = 175 листов.
Ответ: 175

Слайд 4 2. Условие:

Из книги выпало несколько идущих подряд листов.

2. Условие:Из книги выпало несколько идущих подряд листов. Номер последней страницы

Номер последней страницы перед выпавшими листами — 326, номер

первой страницы после выпавших листов записывается теме же цифрами, но в другом порядке. Сколько листов выпало из книги?

Слайд 5 Решение:
1)В первую очередь узнаем номер первой страницы после

Решение:1)В первую очередь узнаем номер первой страницы после выпавших листов.Из цифр

выпавших листов.
Из цифр числа 326 можно составить следующие возможные

комбинации чисел: 362, 236, 263, 623, 632.
Страницы 236 и 263 нам не подходят, так как меньше 326, а этого быть не может.
Мы знаем, что первая страница в книге после выпавших листов будет всегда нечетной, поэтому 362, и 632 нам так же не подходят.
Вывод: номер первой страницы после выпавших листов — 623.
2)Определим количество выпавших страниц:
623 — 326 — 1 = 296 страниц.
3)Осталось узнать, сколько листов выпало из книги:
296 : 2 = 148 листов.
Ответ: 148

Слайд 6 3. Условие:
Хозяин договорился с рабочими, что они выкопают

3. Условие:Хозяин договорился с рабочими, что они выкопают ему колодец на

ему колодец на следующих условиях: за первый метр он

заплатит 3800 рублей, а за каждый следующий метр будет платить на 1500 рублей больше, чем за предыдущий. Сколько рублей хозяин должен будет заплатить рабочим, если они выкопают колодец глубиной 6 метров?

Слайд 7
Решение:
Хозяин должен будет заплатить рабочим за колодец глубиной

Решение:Хозяин должен будет заплатить рабочим за колодец глубиной 6 метров:3800 +

6 метров:
3800 + (3800 + 1500) + (3800 +

1500 + 1500) + (3800 + 1500 + 1500 + 1500) + … + (3800 + 1500 · 5) = 3800 · 6 + 1500 · (1 + 2 + 3 + 4 + 5 ) = 22800 + 1500 · 15 = 22800 + 22500 = 45300 рублей.
Ответ: 45300

Слайд 8 4. Условие:
Список за­да­ний вик­то­ри­ны со­сто­ял из 50 вопросов.

4. Условие:Список за­да­ний вик­то­ри­ны со­сто­ял из 50 вопросов. За каж­дый пра­виль­ный

За каж­дый пра­виль­ный ответ уче­ник по­лу­чал 9 очков, за

не­пра­виль­ный ответ с него спи­сы­ва­ли 14 очков, а при от­сут­ствии от­ве­та да­ва­ли 0 очков. Сколь­ко вер­ных от­ве­тов дал ученик, на­брав­ший 207 очков, если известно, что по край­ней мере один раз он ошибся?

Слайд 9 Решение:
Пусть ученик дал Х — правильных ответов, У

Решение:Пусть ученик дал Х — правильных ответов, У — неправильных ответов

— неправильных ответов (У ≥ 1, так как ученик

по край­ней мере один раз ошибся) , Z раз не дал ответа.

Всего вопросов в викторине — 50, тогда получим следующее 1-ое уравнение:  Х + У + Z = 50.

В результате викторины ученик набрал 207 очков
(за правильный ответ получал 9 очков; за неправильный с него списывали 14 очков; при отсутствии ответа давали 0 очков) , поэтому второе уравнение примет следующий вид: 9Х — 14У + 0Z = 207.

Слайд 10 В итоге имеем следующую систему с тремя переменными:

В итоге имеем следующую систему с тремя переменными: Из второго уравнения:


Из второго уравнения:
9Х — 14У + 0Z =

207 ⇒ 9Х — 14У  = 207 ⇒ 9Х — 207 = 14У  ⇒ 9 (Х — 23) = 14У ⇒
Мы видим, что левая часть, получившегося уравнения, делится на 9, а это значит, что и правая часть делится на 9, то есть 14У делится на 9.
Рассмотрим следующие случаи:
У = 9, тогда 9 (Х — 23) = 14У = 14 · 9  ⇒ 9 (Х — 23) = 126 ⇒ Х — 23 = 14 ⇒ Х = 37 .  Тогда 37 + 9 + Z = 50 ⇒ Z = 4
У = 18, тогда 9 (Х — 23) = 14У = 14 · 18  ⇒ 9 (Х — 23) = 252 ⇒ Х — 23 = 28 ⇒ Х = 51.  Тогда 51 + 18 + Z ≠ 50 ⇒ пришли к противоречию условиям задачи.
Делаем вывод, что ученик дал 37 правильных ответа.
Ответ: 37

Слайд 11 5. Условие:
Взяли несколько досок и распилили их. Всего

5. Условие:Взяли несколько досок и распилили их. Всего сделали 10 поперечных

сделали 10 поперечных распилов, в итоге получилось 17 кусков.

Сколько досок взяли?

Слайд 12 Решение:
Возьмем одну доску и распилим её 10-ью поперечными

Решение:Возьмем одну доску и распилим её 10-ью поперечными распилами. В итоге

распилами. В итоге получим 11 кусков.
Теперь возьмем две доски

и распилим их 10-ью поперечными распилами (произвольным образом). В итоге получим 12 кусков.
Возьмем три доски и распилим их 10-ью поперечными распилами (произвольным образом). В итоге получим 13 кусков.
и т.д.
Получаем закономерность: при распиливании X досок 10-ью поперечными распилами, получаем (10 + X) кусков.
На основе данной закономерности и условий задачи получаем следующее уравнение, где Х — количество досок, которые необходимо распилить:
10 + Х = 17
Х = 7 досок
Ответ: 7

Слайд 13 6. Условие:
Взяли несколько досок и распилили их. Всего

6. Условие:Взяли несколько досок и распилили их. Всего сделали 5 поперечных

сделали 5 поперечных распилов, в итоге получилось 23 куска.

Сколько досок взяли?
Решение:
Возьмем одну доску и распилим её 5-ью поперечными распилами. В итоге получим 6 кусков.
Теперь возьмем две доски и распилим их 5-ью поперечными распилами (произвольным образом).В итоге получим 7 кусков.
Возьмем три доски и распилим их 5-ью поперечными распилами (произвольным образом).В итоге получим 8 кусков.
и т.д.
Получаем закономерность: при распиливании X досок 5-ью поперечными распилами, получаем (5 + X) кусков. На основе данной закономерности и условий задачи получаем следующее уравнение, где Х — количество досок, которые необходимо распилить:
5 + Х = 23
Х = 18 досок
Ответ: 18

Слайд 14 7. Условие:
Десять столбов соединены между собой проводами так,

7. Условие:Десять столбов соединены между собой проводами так, что от каждого

что от каждого столба отходит ровно 9 проводов. Сколько

всего проводов протянуто между этими десятью столбами?

Решение:
От каждого столба отходит ровно 9 проводов, получается, что всего 10 ⋅ 9 = 90 соединения. Учтём, что два столба связаны друг с другом одним проводом, а это значит, что всего между этими десятью столбами будет протянуто проводов в два раза меньше, чем соединений, то есть 90 : 2 = 45 проводов.
Ответ: 45


Слайд 15 8. Условие:
В ма­га­зи­не бы­то­вой тех­ни­ки объём про­даж хо­ло­диль­ни­ков

8. Условие:В ма­га­зи­не бы­то­вой тех­ни­ки объём про­даж хо­ло­диль­ни­ков носит се­зон­ный характер.

носит се­зон­ный характер. В ян­ва­ре было про­да­но 10 холодильников,

и в три по­сле­ду­ю­щих ме­ся­ца про­да­ва­ли по 10 холодильников. С мая про­да­жи уве­ли­чи­ва­лись на 15 еди­ниц по срав­не­нию с преды­ду­щим месяцем. С сен­тяб­ря объём про­даж начал умень­шать­ся на 15 хо­ло­диль­ни­ков каж­дый месяц от­но­си­тель­но преды­ду­ще­го месяца. Сколь­ко хо­ло­диль­ни­ков про­дал ма­га­зин за год?

Слайд 16 Решение:
Определим объём продаж холодильников в каждом месяце: январь

Решение:Определим объём продаж холодильников в каждом месяце: январь — 10; февраль

— 10; февраль — 10; март — 10; апрель

— 10; май — 25 (10+15); июнь — 40 (25+15); июль — 55 (40+15); август — 70 (55+15); сентябрь — 55 (70-15); октябрь — 40 (55-15); ноябрь — 25 (40-15); декабрь — 10 (25-15);
Чтобы найти объём продаж холодильников за год, просуммируем месячные продажи: 10 + 10 + 10 + 10 + 25 + 40 + 55 + 70 + 55 + 40 + 25 + 10 = 360.
Ответ: 360 холодильников

Слайд 17 Вариант 1:
1. Условие:
Список за­да­ний вик­то­ри­ны со­сто­ял из 33

Вариант 1:1. Условие:Список за­да­ний вик­то­ри­ны со­сто­ял из 33 вопросов. За каж­дый

вопросов. За каж­дый пра­виль­ный ответ уче­ник по­лу­чал 7 очков,

за не­пра­виль­ный ответ с него спи­сы­ва­ли 12 очков, а при от­сут­ствии от­ве­та да­ва­ли 0 очков. Сколь­ко вер­ных от­ве­тов дал ученик, на­брав­ший 70 очков, если известно, что по край­ней мере один раз он ошибся?

2. Условие:
Взяли несколько досок и распилили их. Всего сделали 8 поперечных распилов, в итоге получилось 19 кусков. Сколько досок взяли?

3. Условие:
Семь столбов соединены между собой проводами так, что от каждого столба отходит ровно 6 проводов. Сколько всего проводов протянуто между этими семью столбами?

Вариант 2:
1. Условие:
Список за­да­ний вик­то­ри­ны со­сто­ял из 25 вопросов. За каж­дый пра­виль­ный ответ уче­ник по­лу­чал 7 очков, за не­пра­виль­ный ответ с него спи­сы­ва­ли 10 очков, а при от­сут­ствии от­ве­та да­ва­ли 0 очков. Сколь­ко вер­ных от­ве­тов дал ученик, на­брав­ший 42 очка, если известно, что по край­ней мере один раз он ошибся?

2. Условие:
Взяли несколько досок и распилили их. Всего сделали 11 поперечных распилов, в итоге получилось 16 кусков. Сколько досок взяли?

3. Условие:
Восемь столбов соединены между собой проводами так, что от каждого столба отходит ровно 7 проводов. Сколько всего проводов протянуто между этими восемью столбами?


  • Имя файла: prezentatsiya-reshaem-zadanie-n20-bazovyy-uroven.pptx
  • Количество просмотров: 183
  • Количество скачиваний: 1