Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Числа Фибоначчи

ФИБОНАЧЧИ (ок. 1175–1250)Итальянский математик. Родился в Пизе, стал первым великим математиком Европы Средневековья. Он издавал свои книги по арифметике, алгебре и другим математическим дисциплинам. От мусульманских математиков он узнал о системе цифр, придуманной в Индии и
Презентация на тему: Числа Фибоначчи«Школа №1195»Подготовил ученик10 класса «У» Мацукевич Валерий Борисович ФИБОНАЧЧИ (ок. 1175–1250)Итальянский математик. Родился в Пизе, стал первым великим математиком Европы История. Последовательность Фибоначчи была хорошо известна в древней Индии  Образец длиной n может На Западе эта последовательность была исследована Леонардо Пизанским, известным как Фибоначчи, в его ЧИСЛА ФИБОНАЧЧИ - числовая последовательность, где каждый последующий член ряда равен сумме В 1997 году несколько странных особенностей ряда описал исследователь Владимир Михайлов.Михайлов убежден, Цифровой код развития цивилизации можно определить с помощью различных методов в нумерологии. Используемые источники для создания презентации:http://ru.wikipedia.org/wiki/Числа_Фибоначчиhttp://www.bibliotekar.ru/index.files/1/315.htmhttp://elementy.ru/trefil/21136 Спасибо за внимание.
Слайды презентации

Слайд 2 ФИБОНАЧЧИ
(ок. 1175–1250)
Итальянский математик. Родился в Пизе, стал

ФИБОНАЧЧИ (ок. 1175–1250)Итальянский математик. Родился в Пизе, стал первым великим математиком

первым великим математиком Европы Средневековья. Он издавал свои книги

по арифметике, алгебре и другим математическим дисциплинам. От мусульманских математиков он узнал о системе цифр, придуманной в Индии и уже принятой в арабском мире, и уверился в ее превосходстве (эти цифры были предшественниками современных арабских цифр).


Слайд 3 История.
Последовательность Фибоначчи была хорошо известна в древней

История. Последовательность Фибоначчи была хорошо известна в древней Индии Образец длиной n может

Индии
Образец длиной n может быть построен путём добавления S к образцу

длиной n-1, либо L к образцу длиной n-2; и просодицисты показали, что число образцов длиною n является суммой двух предыдущих чисел в последовательности. Дональд Кнут рассматривает этот эффект в книге «Искусство программирования».


Слайд 4 На Западе эта последовательность была исследована Леонардо Пизанским,

На Западе эта последовательность была исследована Леонардо Пизанским, известным как Фибоначчи, в

известным как Фибоначчи, в его труде «Liber Abaci» (1202). Он

рассматривает развитие идеализированной (биологически нереальной) популяции кроликов, предполагая что:
В «нулевом» месяце имеется пара кроликов (1 новая пара).
В первом месяце первая пара производит на свет другую пару (1 новая пара).
Во втором месяце обе пары кроликов порождают другие пары и первая пара погибает (2 новые пары).
В третьем месяце вторая пара и две новые пары порождают в общем три новые пары, а старая вторая пара погибает (3 новые пары).
Закономерным является тот факт, что каждая пара кроликов порождает ещё две пары на протяжении жизни, а затем погибает.
Пусть популяция за месяц n  будет равна Fn . В это время только те кролики, которые жили в месяце n-2 , являются способными к размножению и производят потомков, тогда Fn-2 пар прибавится к текущей популяции Fn-1. Таким образом общее количество пар будет равно: Fn = Fn-2 + Fn-1.



Слайд 6 ЧИСЛА ФИБОНАЧЧИ - числовая последовательность, где каждый последующий

ЧИСЛА ФИБОНАЧЧИ - числовая последовательность, где каждый последующий член ряда равен

член ряда равен сумме двух предыдущих, то есть: 1,

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368,.. 75025,.. 3478759200, 5628750625,.. 260993908980000,..422297015649625,.. 19581068021641812000,..
Изучением сложных и удивительных свойств чисел ряда Фибоначчи занимались самые различные профессиональные ученые


Слайд 8 В 1997 году несколько странных особенностей ряда описал

В 1997 году несколько странных особенностей ряда описал исследователь Владимир Михайлов.Михайлов

исследователь Владимир Михайлов.Михайлов убежден, что Природа (в том числе

и Человек) развивается по законам, которые заложены в этой числовой последовательности. В сосновой шишке, если посмотреть на нее со стороны черенка, можно обнаружить две спирали, одна закручена против другая по часовой стрелке. Число этих спиралей 8 и 13. В подсолнухах встречаются пары спиралей: 13 и 21, 21 и 34, 34 и 55, 55 и 89. И отклонений от этих пар не бывает!.. У Человека в наборе хромосом соматической клетки (их 23 пары), источником наследственных болезней являются 8, 13 и 21 пары хромосом... Возможно, все это свидетельствует о том, что ряд чисел Фибоначчи представляет собой некий зашифрованный закон природы.


Слайд 9 Цифровой код развития цивилизации можно определить с помощью

Цифровой код развития цивилизации можно определить с помощью различных методов в

различных методов в нумерологии. Например, с помощью приведения сложных

чисел к однозначным (например, 15 есть 1+5=6 и т.д.). Проводя подобную процедуру сложения со всеми сложными числами ряда Фибоначчи, Михайлов получил следующий ряд этих чисел: 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8, 7, 6, 4, 1, 5, 6, 8, 1, 9, затем все повторяется 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 4, 8, 8,.. и повторяется вновь и вновь... Этот ряд также обладает свойствами ряда Фибоначчи, каждый бесконечно последующий член равен сумме предыдущих. Например, сумма 13-го и 14-го членов равна 15, т.е. 8 и 8=16, 16=1+6=7. Оказывается, что этот ряд периодичный, с периодом в 24 члена, после чего, весь порядок цифр повторяется. Получив этот период, Михайлов выдвинул интересное предположение - не является ли набор из 24 цифр своеобразным цифровым кодом развития цивилизации?


Слайд 10 Используемые источники для создания презентации:
http://ru.wikipedia.org/wiki/Числа_Фибоначчи
http://www.bibliotekar.ru/index.files/1/315.htm
http://elementy.ru/trefil/21136

Используемые источники для создания презентации:http://ru.wikipedia.org/wiki/Числа_Фибоначчиhttp://www.bibliotekar.ru/index.files/1/315.htmhttp://elementy.ru/trefil/21136

  • Имя файла: chisla-fibonachchi.pptx
  • Количество просмотров: 104
  • Количество скачиваний: 0