Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Geometric Transformations

*Intro & General InformationGeometric Transformations Construction (translate, rotate, scale, mirror)Viewing (projections, zooming)Animation (processes, vibration)
Geometric Transformations Spring, 2018 AUAZeid, I., Mastering CAD/CAM, Chapter 12 *Intro & General InformationGeometric Transformations Construction (translate, rotate, scale, mirror)Viewing (projections, zooming)Animation (processes, vibration) *General Information Transformation of a point is basic in GT. It can *TranslationTranslation is a rigid-body transformation (Euclidean) when each entity of the model Scaling is used to change the size of an entity or a *Mirror			Plane* => Negate the corresponding coordinate Mirror through	Line* => Reflect through 2 *RotationRotation is a non-commutative transformation (depends on sequence).Question: Let the length of *Homogeneous Transformation - 1When we scale then rotate, the transformed image is *Homogeneous Transformation - 2The transformation matrices in new (homogeneous) representation: *Composition of TransformationsNow we are able to include all the transformations in *Another exampleScale line AB about point M by factor of 2 and
Слайды презентации

Слайд 2 *
Intro & General Information
Geometric Transformations
Construction
(translate, rotate,

*Intro & General InformationGeometric Transformations Construction (translate, rotate, scale, mirror)Viewing (projections, zooming)Animation (processes, vibration)

scale, mirror)
Viewing
(projections, zooming)
Animation
(processes, vibration)


Слайд 3 *
General Information
Transformation of a point is basic

*General Information Transformation of a point is basic in GT. It

in GT. It can be formulated as follows:
Given a

point P that belongs to a geometric model find the corresponding point P* in the new position such that

P* = f(P, transformation parameters)

The transformation parameters should provide ONE-TO-ONE-MAPPING.
Multiple transformations can be combined to yield a single transformation which should have the same effect as the sequential application of original ones. CONCATENATION /kənˌkatnˈāSH(ə)n/
Equation of P* for graphics hardware should be in matrix notation:
P* = [T]P,
where [T] is the transformation matrix.

Слайд 4 *
Translation
Translation is a rigid-body transformation (Euclidean) when each

*TranslationTranslation is a rigid-body transformation (Euclidean) when each entity of the

entity of the model remains parallel, or each point


moves an equal distance in a given direction:
P* = P + d (for both 2D and 3D). In a scalar form (for 3D): x* = x + xd
y* = y + yd
z* = z + zd

Question: Find the coordinates of vertices A*, B*, and C* of the translated triangle.
The distance vector of translation: D = [-7 -4]T.
Verify that the lengths of the edges are unchanged.


Слайд 5 Scaling is used to change the size of

Scaling is used to change the size of an entity or

an entity or a model.
P* = [S]P
sx 0

0
For general case [S] = 0 sy 0 ,
0 0 sz
If 0 < s < 1 - compression
If s > 1 - stretching
sx = sy = sz - uniform scaling, otherwise - non-uniform

*

Scaling

where sx, sy, and sz are the scaling factors in the X, Y, and Z directions respectively.

Question: The larger circle is the scaled copy of the smaller one. Can you say that we have a uniform scaling? Why? Define y* and R*.



Слайд 6 *
Mirror
Plane* => Negate the corresponding coordinate
Mirror through Line*

*Mirror			Plane* => Negate the corresponding coordinate Mirror through	Line* => Reflect through

=> Reflect through 2 planes intersecting at the axis


Point* => Reflect through 3 planes intersecting at the point
* plane - principal plane, line - X, Y, or Z axes, point - CS origin
P* = [M]P,
where [M] = =


Question: Define the signs (in the matrix)
for the reflections (mirroring) through:
a) x = 0, y = 0, z = 0 planes
b) X, Y, and Z axes
c) the CS origin





Слайд 7 *
Rotation
Rotation is a non-commutative transformation (depends on sequence).

Question:

*RotationRotation is a non-commutative transformation (depends on sequence).Question: Let the length

Let the length of a major and minor axes

of an ellipse with the center on the origin of the CS be 2a and 2b respectively, and  - the angle between the major axis and the x-axis. Then, derive the expression of an ellipse in the (O,x,y) system.

Слайд 8 *
Homogeneous Transformation - 1
When we scale then rotate,

*Homogeneous Transformation - 1When we scale then rotate, the transformed image

the transformed image is given by:
P* = ([R][S])P
where [S],

[R], [R] [S] are 3x3 transformation matrices. This is not the case for a translation (P* = P + d). The goal is to find a [D] such that
P + d = [D]P
in order to perform valid matrix multiplication.
This is found by using a homogeneous coordinates.
Homogeneous Transformation maps n-dimensional space into (n+1)- dim.
3D representation of the point vector - P = [x, y, z]T
Homogeneous rep. of the same vector - P = [xw, yw, zw, w]T where w = 1


Слайд 9 *
Homogeneous Transformation - 2
The transformation matrices in new

*Homogeneous Transformation - 2The transformation matrices in new (homogeneous) representation:

(homogeneous) representation:


Слайд 10 *
Composition of Transformations
Now we are able to include

*Composition of TransformationsNow we are able to include all the transformations

all the transformations in a single matrix. In case

of composition of transformations: P* = [Tn][Tn-1]...[T2][T1]P, where [Ti] are different transformation matrices.
Sequence is important!

Practice: Mirror point A through the given line and find x and y.

A (8,5)

y

x

O


(1,6)


450


A* (x,y)


  • Имя файла: geometric-transformations.pptx
  • Количество просмотров: 198
  • Количество скачиваний: 0