Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Методы оптимизации

Содержание

Под оптимизацией понимают процесс выбора наилучшего варианта из всех возможных В процессе решения задачи оптимизации обычно необходимо найти оптимальные значения некоторых параметров, определяющих данную задачу. При решении инженерных задач их принято называть проектными параметрами, а в
МЕТОДЫ ОПТИМИЗАЦИИ§ 1. Основные понятия Под оптимизацией понимают процесс выбора наилучшего варианта из всех возможных В процессе Выбор оптимального решения или сравнение двух альтернативных решений проводится с помощью некоторой Задачи оптимизации.Безусловная задача оптимизации состоит в отыскании максимума или минимума действительной функции Теория и методы решения задач оптимизации при наличии ограничений составляют предмет исследования § 2. Одномерная оптимизацияОдномерная задача оптимизации в общем случае формулируется следующим образом: Теорема Вейерштрасса. Всякая функция f(x), непрерывная на отрезке принимает на этом отрезке Методы поиска.Будем предполагать, что целевая функция унимодальна, т. е. на данном отрезке Погрешность приближенного решения задачи определяется разностью между оптимальным значением  х проектного Процесс решения задачи методом поиска состоит в последовательном сужении интервала изменения проектного Тогда для выполнения условия в качестве приближения к оптимальному значению можно принять Метод золотого сечения.Метод состоит в построении последовательности отрезков , ,…, стягивающихся к 1 шагвнутри отрезка      выбираем некоторые внутренние точки Поскольку в данном случае Второй шаг проводим на отрезке Поскольку здесь Теперь рассмотрим способ размещения внутренних точек на каждом отрезке Пусть длина интервала Из этого соотношения можно найти точку деления, вычислив отношенияПреобразуем выражение и найдем Поскольку нас интересует только положительное решение, то Очевидно, что интервал неопределенности можноразделить Начальная длина интервала неопределенности составляет После первого шага оптимизации получается новый интервал На втором шаге отрезок также делится в соотношении золотого сечения. При этом Вторая точка деления выбирается так же, как выбирается точка при делении отрезка По аналогии можно записать координаты точек деления у и z отрезка на Вычислению, естественно, подлежит только одна из координат у, z другая координата берется Как и в общем случае метода поиска, процесс оптимизации заканчивается при выполнении
Слайды презентации

Слайд 2 Под оптимизацией понимают
процесс выбора наилучшего варианта
из

Под оптимизацией понимают процесс выбора наилучшего варианта из всех возможных В

всех возможных
В процессе решения задачи оптимизации
обычно необходимо

найти оптимальные значения
некоторых параметров, определяющих данную задачу.
При решении инженерных задач их принято называть
проектными параметрами,
а в экономических задачах их обычно называют
параметрами плана.

Слайд 3 Выбор оптимального решения или
сравнение двух альтернативных решений

Выбор оптимального решения или сравнение двух альтернативных решений проводится с помощью

проводится с помощью
некоторой зависимой величины (функции),
определяемой проектными

параметрами.
Эта величина называется целевой функцией
(или критерием качества).

В процессе решения задачи оптимизации
должны быть найдены такие значения
проектных параметров, при которых
целевая функция имеет минимум (или максимум).



Слайд 4 Задачи оптимизации.
Безусловная задача оптимизации состоит в отыскании максимума

Задачи оптимизации.Безусловная задача оптимизации состоит в отыскании максимума или минимума действительной

или минимума действительной функции от n действительных переменных и

определении соответствующих значений аргументов
Условные задачи оптимизации, или задачи с ограничениями, — это такие, при формулировке которых задаются некоторые условия (ограничения) на множестве.

Слайд 5 Теория и методы решения задач оптимизации
при наличии

Теория и методы решения задач оптимизации при наличии ограничений составляют предмет

ограничений
составляют предмет исследования
одного из важных разделов прикладной

математики —
математического программирования.

Слайд 6 § 2. Одномерная оптимизация
Одномерная задача оптимизации в общем

§ 2. Одномерная оптимизацияОдномерная задача оптимизации в общем случае формулируется следующим

случае
формулируется следующим образом:
Найти наименьшее (или наибольшее)
значение

целевой функции у = f(x),
заданной на множестве

и определить значение проектного параметра

при котором целевая функция принимает
экстремальное значение.
Существование решения поставленной задачи
вытекает из следующей теоремы:


Слайд 7 Теорема Вейерштрасса.

Всякая функция f(x), непрерывная на отрезке

Теорема Вейерштрасса. Всякая функция f(x), непрерывная на отрезке принимает на этом


принимает на этом отрезке наименьшее и наибольшее
значения, т.

е. на отрезке

существуют такие точки

и

что для любого

имеют место неравенства

.


Слайд 8 Методы поиска.
Будем предполагать, что целевая функция
унимодальна,
т.

Методы поиска.Будем предполагать, что целевая функция унимодальна, т. е. на данном

е. на данном отрезке она имеет только один минимум.


Численные методы поиска экстремальных значений
функции рассмотрим на примере нахождения
минимума функции f(x) на отрезке



Слайд 9 Погрешность приближенного решения задачи определяется
разностью между оптимальным

Погрешность приближенного решения задачи определяется разностью между оптимальным значением х проектного

значением х
проектного параметра и приближением к нему


Потребуем, чтобы эта погрешность была
по модулю меньше заданного допустимого значения





Слайд 10 Процесс решения задачи методом поиска
состоит в последовательном

Процесс решения задачи методом поиска состоит в последовательном сужении интервала изменения

сужении
интервала изменения проектного параметра,
называемого интервалом неопределенности
В

начале процесса оптимизации его длина равна b – a,
а к концу она должна стать меньше

т. е. оптимальное значение проектного параметра
должно находиться в интервале неопределенности —
отрезке

причем



Слайд 11 Тогда для выполнения условия
в качестве приближения

Тогда для выполнения условия в качестве приближения к оптимальному значению можно

к оптимальному значению
можно принять любое
Например,
или


, или

В последнем случае достаточно выполнения неравенства


Слайд 12 Метод золотого сечения.
Метод состоит в построении
последовательности отрезков

Метод золотого сечения.Метод состоит в построении последовательности отрезков , ,…, стягивающихся


,
,…, стягивающихся к точке минимума
функции f(x).


На каждом шаге, за исключением первого,
вычисление значения функции f(x)
проводится лишь в одной точке.
Эта точка, называемая золотым сечением,
выбирается специальным образом.

Слайд 13 1 шаг

внутри отрезка

1 шагвнутри отрезка    выбираем некоторые внутренние точки и


выбираем некоторые внутренние точки
и
и

вычисляем значения целевой функции

и



Слайд 15 Поскольку в данном случае

Поскольку в данном случае


на одном из прилегающих к
отрезков:
или


Поэтому отрезок

можно отбросить, сузив тем самым
первоначальный интервал неопределенности.


Слайд 16 Второй шаг

проводим на отрезке

Второй шаг проводим на отрезке     где Нужно


где

Нужно снова

выбрать две внутренние точки,
но одна из них

осталась из предыдущего шага,
поэтому достаточно выбрать лишь одну точку

вычислить значение

и провести сравнение.


Слайд 17 Поскольку здесь

Поскольку здесь

отрезке
Обозначим этот отрезок
снова выберем одну внутреннюю точку


и повторим процедуру сужения
интервала неопределенности.
Процесс оптимизации повторяется до тех пор,
пока длина очередного отрезка

не станет меньше заданной величины



Слайд 18 Теперь рассмотрим способ размещения внутренних точек
на каждом

Теперь рассмотрим способ размещения внутренних точек на каждом отрезке Пусть длина

отрезке
Пусть длина интервала неопределенности равна l,
а точка

деления разбивает его на части

,

 > 

 

 

Золотое сечение интервала неопределенности
выбирается так, чтобы отношение длины
большего отрезка к длине всего интервала
равнялось отношению длины меньшего отрезка
к длине большего отрезка:



Слайд 19 Из этого соотношения можно найти точку деления,
вычислив

Из этого соотношения можно найти точку деления, вычислив отношенияПреобразуем выражение и

отношения


Преобразуем выражение и найдем значения
и










Слайд 20 Поскольку нас интересует только положительное решение, то


Очевидно,

Поскольку нас интересует только положительное решение, то Очевидно, что интервал неопределенности

что интервал неопределенности можно
разделить в соотношении золотого сечения двояко:


в пропорциях

:

и

:

В данном случае имеем


Аналогично,


Слайд 21 Начальная длина интервала неопределенности составляет
После первого шага

Начальная длина интервала неопределенности составляет После первого шага оптимизации получается новый

оптимизации получается
новый интервал неопределенности — отрезок
Его длина

равна

Слайд 22 На втором шаге отрезок
также делится в

На втором шаге отрезок также делится в соотношении золотого сечения. При

соотношении золотого сечения.
При этом одной из точек деления

будет точка

Покажем это:

Последнее равенство следует из соотношения



Слайд 23 Вторая точка деления
выбирается так же, как

Вторая точка деления выбирается так же, как выбирается точка при делении

выбирается точка
при делении отрезка
т. е.


И снова интервал неопределенности
уменьшается до размера


Слайд 24 По аналогии можно записать координаты
точек деления у

По аналогии можно записать координаты точек деления у и z отрезка

и z отрезка
на к-м шаге оптимизации (у

< z):


Слайд 25 Вычислению, естественно,
подлежит только одна из координат у,

Вычислению, естественно, подлежит только одна из координат у, z другая координата

z
другая координата берется с предыдущего шага.
При этом

длина интервала неопределенности равна


  • Имя файла: metody-optimizatsii.pptx
  • Количество просмотров: 147
  • Количество скачиваний: 0