Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Одно из свойств арифметических прогрессий

Содержание

ЭпиграфЧерез математические знания, полученные в школе, лежит широкая дорога к огромным, почти необозримым областям труда и открытий. Маркушевич А. И.
МАОУ «СОШ № 1» с углублённым изучением отдельных предметов имени И. А. ЭпиграфЧерез математические знания, полученные в школе, лежит широкая дорога к огромным, почти Доказать одно из свойств арифметических прогрессий и воспользоваться им на практике. Цель исследовательской  работы: Арифметическая прогрессия - это последовательность, каждый член которой, начиная со второго, равен 7.32. 1) Найдите сумму первых 20 совпадающих членов двух арифметических прогрессий: Первый совпадающий член двух данных прогрессий можно найти, непосредственно выписав несколько последовательных 1) НОК(Наименьшим общим кратным) натуральных чисел а и b называют наименьшее натуральное Если а : b и а : c Дано: (аn) и (bn) – арифметические прогрессии, соответственно с разностями d1 и См d = c2 – c1 = al – aR = a1 См примеры: 1) 12 : 4 Примечание:  Свойство НОК:Если а и b – не взаимно простые числа,НОК(Ra; 7.32. 1)Найдите сумму первых 20 совпадающих членов двух арифметических прогрессий:  3, 3) d1 = a2 – a1 = 8 – 3 = 2 x 18 + 35(20 – 2) Найдите сумму первых 10 совпадающих членов двух арифметических прогрессий: 3) d1 = a2 – a1 = 7 – 3 = 2 x 19 + 36(10 – 1)S10 12.98.  В арифметической прогрессии 3; 6; 9; … содержится 463 члена, 2) d1 = a2 – a1 = 6 – 3 5) сn = c1 + d(n – 1); n - ? В заключении строки из романа А. С. Пушкина «Евгений Онегин», сказанные о Ямб – стихотворный размер с ударениями на чётных слогах стиха (н: Мой Хорей – стихотворный размер с ударением на нечётных Практическая значимость1)Моя работа может использоваться на уроках алгебры при изучении темы «Арифметические Сборник заданий для подготовки к ГИА в 9 классе;  Сборник задач
Слайды презентации

Слайд 2 Эпиграф
Через математические знания, полученные в школе, лежит широкая

ЭпиграфЧерез математические знания, полученные в школе, лежит широкая дорога к огромным,

дорога к огромным, почти необозримым областям труда и открытий.

Маркушевич А. И.

Слайд 3
Доказать одно из свойств арифметических прогрессий и воспользоваться

Доказать одно из свойств арифметических прогрессий и воспользоваться им на практике. Цель исследовательской работы:

им на практике.

Цель исследовательской работы:


Слайд 4 Арифметическая прогрессия - это последовательность, каждый член которой,

Арифметическая прогрессия - это последовательность, каждый член которой, начиная со второго,

начиная со второго, равен предыдущему, сложенному с одним и

тем же числом.
аn = a1 + d(n – 1)
d = an + 1 – аn
а1 + аn
Sn = x n
2
2а1 + d(n – 1)
Sn = x n
2

Слайд 5 7.32.
1) Найдите сумму первых 20 совпадающих членов

7.32. 1) Найдите сумму первых 20 совпадающих членов двух арифметических прогрессий:

двух арифметических прогрессий:
3, 8, 13, … и

4, 11, 18, … .

2)Найдите сумму первых 10 совпадающих членов двух арифметических прогрессий:
3, 7, 11, … и 1, 10, 19, … .

Слайд 6 Первый совпадающий член двух данных прогрессий можно найти,

Первый совпадающий член двух данных прогрессий можно найти, непосредственно выписав несколько

непосредственно выписав несколько последовательных членов каждой из них.

d = НОК(d1; d2)
d1 – разность первой прогрессии
d2 – разность второй прогрессии

« Действительно ли это так и можно ли это доказать?»


Слайд 7 1) НОК(Наименьшим общим кратным) натуральных чисел а и

1) НОК(Наименьшим общим кратным) натуральных чисел а и b называют наименьшее

b называют наименьшее натуральное число, которое кратно и а,

и b.
Пример: НОК(6; 8) = 24

2)Если НОД(а; b) = 1, т. е. числа а и b взаимно простые, то НОК(а; b) = a x b
Пример: а = 3; b = 4
НОД(3; 4) = 1
НОК(3; 4) = 3 x 4 = 12


Слайд 8

Если а : b и а : c

Если а : b и а : c   a

a : b x

c
НОК(Ra; Rb) = RНОК(а; b), где
НОД(а; b) = 1



Слайд 9 Дано: (аn) и (bn) – арифметические прогрессии, соответственно

Дано: (аn) и (bn) – арифметические прогрессии, соответственно с разностями d1

с разностями d1 и d2, НОД(d1;d2) = 1;
(сn)

содержит совпадающие члены данных последовательностей, d – разность прогрессии
Доказать: d = НОК(d1; d2) = d1 x d2

Доказательство:
1) см (сn) и (аn)
с1 = аR = а1 + d1(R – 1)
c2 = al = a1 + d1(l – 1)


Слайд 10 См d = c2 – c1 = al

См d = c2 – c1 = al – aR =

– aR = a1 – a1 + d1(l –

R) =
= d1(l – R) d : d1

2)см (сn) и (bn)
с1 = bm = b1 + d2(m – 1)
c2 = bp = b1 + d2(p – 1)
см d = c2 – c1 = d2(m – p) d : d2
Вывод:
1)d : d1
d : d1 x d2 d = НОК(d1; d2)
d : d2 НОД(d1;d2) = 1







Слайд 11 См примеры:
1) 12 : 4

См примеры: 1) 12 : 4

12 = НОК(4; 3);см НОД(4;3) = 1
12 : 3
Получено 12 = НОК(4; 3) = 4 x 3
2) см 24 : 6
24 = НОК(6; 8); см НОД(6; 8)=1
24 : 8
24 = НОК(6;8) = 6 x 8
Значит: если НОД(d1; d2) = 1,
то d = НОК(d1;d2) = d1 x d2




Слайд 12 Примечание:
Свойство НОК:
Если а и b –

Примечание: Свойство НОК:Если а и b – не взаимно простые числа,НОК(Ra;

не взаимно простые числа,
НОК(Ra; Rb) = RНОК(а; b),
НОД(а; b)

= 1
См пример:
НОК(6;8) = НОК(2 x 3; 2 x 4) = 2НОК(3; 4) =
= 2 x 12 = 24



Слайд 13 7.32.
1)Найдите сумму первых 20 совпадающих членов двух

7.32. 1)Найдите сумму первых 20 совпадающих членов двух арифметических прогрессий: 3,

арифметических прогрессий:
3, 8, 13, …

4, 11, 18, … .

Решение:
1) S20 - ?
2) (аn): 3, 8, 13, 18, …
(bn): 4, 11, 18, …
(сn): 18, …




Слайд 14
3) d1 = a2 – a1 =

3) d1 = a2 – a1 = 8 – 3

8 – 3 = 5
d2 = b2

– b1 = 11 – 4 = 7

4) см НОД(5; 7) = 1
d = НОК(d1; d2) = НОК(5; 7) = 7 x 5 = 35


2a1 + d(n -1)
5) Sn = x n
2




Слайд 15 2 x

2 x 18 + 35(20 – 1)S20 =

18 + 35(20 – 1)
S20 =

x 20 =
2

36 + 35 x 19 701
= x 20 = x 20 = 7010
2 2

Ответ: S20 = 7010

Слайд 16 2) Найдите сумму первых 10 совпадающих

2) Найдите сумму первых 10 совпадающих членов двух арифметических прогрессий:

членов двух арифметических прогрессий:
3, 7, 11, …

и 1, 10, 19, …

Решение:
1) S10 - ?
2) (an): 3, 7, 11, 15, 19, …
(bn): 1, 10, 19, …
(сn): 19, …


Слайд 17 3) d1 = a2 – a1 =

3) d1 = a2 – a1 = 7 – 3

7 – 3 = 4
d2 =

b2 – b1 = 10 – 1 = 9

4) см НОД(4; 9) = 1
d = НОК(d1; d2) = 4 x 9 = 36

2a1 + d(n – 1)
5) Sn = x n
2

Слайд 18 2 x 19

2 x 19 + 36(10 – 1)S10 =

+ 36(10 – 1)
S10 =

x 10 =
2

38 + 36 x 9 362
= x 10 = x 10 = 1810
2 2

Ответ: S10 = 1810

Слайд 19 12.98.
В арифметической прогрессии 3; 6; 9;

12.98. В арифметической прогрессии 3; 6; 9; … содержится 463 члена,

… содержится 463 члена, в арифметической прогрессии 2; 6;

10; … содержится 351 член. Сколько одинаковых членов содержится в этих прогрессиях.
Решение:
1) n - ?
(аn): 3, 6, 9, … (463 члена)
(bn): 2, 6, 10, … (351 член)
(сn): 6, …

Слайд 20
2) d1 = a2 – a1

2) d1 = a2 – a1 = 6 – 3

= 6 – 3 = 3
d2

= b2 – b1 = 6 – 2 = 4

3) cм НОД(3; 4) = 1
d = НОК(d1; d2) = НОК(3; 4) = 3 x 4 = 12

4) cм аn = а1 + d(n – 1)
а463 = 3 + 3(463 – 1) = 1389
b351 = 2 + 4(351 – 1) = 1402



Слайд 21 5) сn = c1 + d(n –

5) сn = c1 + d(n – 1); n -

1); n - ?
6 + 12(n

– 1) 1389
6 + 12(n – 1) 1402
6 + 12n – 12 1389
6 + 12n – 12 1402
12n 1395
12n 1408
n 116, 25
n 117, 33
n = 116
Ответ: 116 одинаковых членов содержится в этих прогрессиях.






Слайд 22 В заключении строки из романа А. С. Пушкина

В заключении строки из романа А. С. Пушкина «Евгений Онегин», сказанные

«Евгений Онегин», сказанные о его герое: «…Не мог он

ямба от хорея, как мы не бились, отличить».Отличие ямба от хорея состоит в различных расположениях ударных слогов стиха.


Слайд 23 Ямб – стихотворный размер с ударениями на чётных

Ямб – стихотворный размер с ударениями на чётных слогах стиха (н:

слогах стиха (н: Мой дядя самых честных правил), т.

е. ударными являются второй, четвёртый, шестой, восьмой и т. д. слоги. Номера ударных слогов образуют арифметическую прогрессию с первым членом 2 и с разностью, равной двум: 2, 4, 6, 8… .


Слайд 24 Хорей – стихотворный размер

Хорей – стихотворный размер с ударением на нечётных слогах

с ударением на нечётных слогах (н: Буря мглою небо

кроет). Номера ударных слогов также образуют арифметическую прогрессию, но её первый член равен единице, а разность по-прежнему равна двум: 1; 3; 5; 7, … .

Слайд 25 Практическая значимость

1)Моя работа может использоваться на уроках алгебры

Практическая значимость1)Моя работа может использоваться на уроках алгебры при изучении темы

при изучении темы «Арифметические прогрессии».

2)Данное исследование поможет

учащимся при написании ГИА и ЕГЭ.




  • Имя файла: odno-iz-svoystv-arifmeticheskih-progressiy.pptx
  • Количество просмотров: 94
  • Количество скачиваний: 0