Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Правильные многогранники

Содержание

Из историиС древнейших времен наши представления о красоте связаны с симметрией. Наверное, этим объясняется интерес человека к многогранникам - удивительным символам симметрии, привлекавшим внимание выдающихся мыслителей.История правильных многогранников уходит в глубокую древность. Изучением правильных многогранников занимались
ПРАВИЛЬНЫЕ МНОГОГРАННИКИВишнякова Дарья Из историиС древнейших времен наши представления о красоте связаны с симметрией. Наверное, Из историиОдно из древнейших упоминаний о правильных многогранниках находится в трактате Платона Имеется несколько эквивалентных определений правильных многогранников.Одно из них звучит так: многогранник называется Другое определение:правильным многогранником называется такой выпуклый многогранник, все грани которого являются одинаковыми Многогранник называется правильным, если:он выпуклыйвсе его грани являются равными правильными многоугольникамив каждой Существует всего пять правильных многогранников: Почему правильные многогранники получили такие имена?Это связано с числом их граней. тетраэдр Правильный тетраэдрсоставлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех Элементы симметрии: Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии Куб (гексаэдр)составлен из шести квадратов. Каждая вершина куба является вершиной трех квадратов. Элементы симметрии: Куб имеет центр симметрии - центр куба, 9 (? – Правильный октаэдрсоставлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырех Элементы симметрии: Октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии. Правильный икосаэдрсоставлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти Элементы симметрии: Икосаэдр имеет центр симметрии - центр икосаэдра, 15 осей симметрии и 15 плоскостей симметрии. Правильный додекаэдрсоставлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трех Элементы симметрии: Додекаэдр имеет центр симметрии - центр додекаэдра, 15 осей симметрии
Слайды презентации

Слайд 2 Из истории
С древнейших времен наши представления о красоте

Из историиС древнейших времен наши представления о красоте связаны с симметрией.

связаны с симметрией. Наверное, этим объясняется интерес человека к

многогранникам - удивительным символам симметрии, привлекавшим внимание выдающихся мыслителей.
История правильных многогранников уходит в глубокую древность. Изучением правильных многогранников занимались Пифагор и его ученики. Их поражала красота, совершенство, гармония этих фигур. Пифагорейцы считали правильные многогранники божественными фигурами и использовали в своих философских сочинениях.

Слайд 3 Из истории
Одно из древнейших упоминаний о правильных многогранниках

Из историиОдно из древнейших упоминаний о правильных многогранниках находится в трактате

находится в трактате Платона (427-347 до н. э.) "Тимаус".

Поэтому правильные многогранники также называются платоновыми телами. Каждый из правильных многогранников, а всего их пять, Платон ассоциировал с четырьмя "земными" элементами: земля (куб), вода (икосаэдр), огонь (тетраэдр), воздух (октаэдр), а также с "неземным" элементом - небом (додекаэдр).

Слайд 4 Имеется несколько эквивалентных определений правильных многогранников.
Одно из них

Имеется несколько эквивалентных определений правильных многогранников.Одно из них звучит так: многогранник

звучит так: многогранник называется правильным, если существуют три концентрические

сферы, одна из которых касается всех граней многогранника, другая касается всех его ребер и третья содержит все его вершины. Это определение напоминает одно из возможных определений правильного многоугольника: многоугольник называется правильным, если он вписан в некоторую окружность и описан около другой окружности, причем эти окружности концентричны.

Слайд 5 Другое определение:
правильным многогранником называется такой выпуклый многогранник, все

Другое определение:правильным многогранником называется такой выпуклый многогранник, все грани которого являются

грани которого являются одинаковыми правильными многоугольниками и все двугранные

углы попарно равны.

Слайд 6 Многогранник называется правильным, если:
он выпуклый
все его грани являются

Многогранник называется правильным, если:он выпуклыйвсе его грани являются равными правильными многоугольникамив

равными правильными многоугольниками
в каждой его вершине сходится одинаковое число

граней
все его двугранные углы равны

Слайд 7 Существует всего пять правильных многогранников:

Существует всего пять правильных многогранников:

Слайд 8 Почему правильные многогранники получили такие имена?
Это связано с

Почему правильные многогранники получили такие имена?Это связано с числом их граней.

числом их граней.
тетраэдр имеет 4 грани, в переводе

с греческого "тетра" - четыре, "эдрон" - грань.
гексаэдр (куб) имеет 6 граней, "гекса" - шесть;
октаэдр - восьмигранник, "окто" - восемь;
додекаэдр - двенадцатигранник, "додека" - двенадцать;
икосаэдр имеет 20 граней, "икоси" - двадцать.

Слайд 9 Правильный тетраэдр
составлен из четырех равносторонних треугольников. Каждая его

Правильный тетраэдрсоставлен из четырех равносторонних треугольников. Каждая его вершина является вершиной

вершина является вершиной трех треугольников. Следовательно, сумма плоских углов

при каждой вершине равна 180°.

Слайд 10 Элементы симметрии:
Тетраэдр не имеет центра симметрии, но

Элементы симметрии: Тетраэдр не имеет центра симметрии, но имеет 3 оси

имеет 3 оси симметрии и
6 плоскостей

симметрии.


Слайд 11 Куб (гексаэдр)
составлен из шести квадратов. Каждая вершина куба

Куб (гексаэдр)составлен из шести квадратов. Каждая вершина куба является вершиной трех

является вершиной трех квадратов. Следовательно, сумма плоских углов при

каждой вершине равна 270°.

Слайд 12 Элементы симметрии:
Куб имеет центр симметрии - центр

Элементы симметрии: Куб имеет центр симметрии - центр куба, 9 (?

куба, 9 (? – уточните!) осей симметрии и 9

плоскостей симметрии.

Слайд 13 Правильный октаэдр
составлен из восьми равносторонних треугольников. Каждая вершина

Правильный октаэдрсоставлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной

октаэдра является вершиной четырех треугольников. Следовательно, сумма плоских углов

при каждой вершине равна 240°.

Слайд 14 Элементы симметрии:
Октаэдр имеет центр симметрии - центр

Элементы симметрии: Октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии.

октаэдра, 9 осей симметрии и 9 плоскостей симметрии.


Слайд 15 Правильный икосаэдр
составлен из двадцати равносторонних треугольников. Каждая вершина

Правильный икосаэдрсоставлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной

икосаэдра является вершиной пяти треугольников. Следовательно, сумма плоских углов

при каждой вершине равна 270°.

Слайд 16 Элементы симметрии:
Икосаэдр имеет центр симметрии - центр

Элементы симметрии: Икосаэдр имеет центр симметрии - центр икосаэдра, 15 осей симметрии и 15 плоскостей симметрии.

икосаэдра, 15 осей симметрии и 15 плоскостей симметрии.


Слайд 17 Правильный додекаэдр
составлен из двенадцати правильных пятиугольников. Каждая вершина

Правильный додекаэдрсоставлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной

додекаэдра является вершиной трех правильных пятиугольников. Следовательно, сумма плоских

углов при каждой вершине равна 324°.

  • Имя файла: pravilnye-mnogogranniki.pptx
  • Количество просмотров: 108
  • Количество скачиваний: 0