Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Правильные многоугольники в природе. Паркеты из правильных многоугольников.

Многоугольники в природе.В природе часто встречаются разнообразные правильные многоугольники. Это могут быть треугольники, четырехугольнике, пятиугольники и т.д. Виртуозно компонуя их, природа создала бесконечное множество сложных, удивительно красивых, легких, прочных и экономичных конструкций.
Правильные многоугольники в природе. Паркеты из правильных многоугольников.Выполнил: Забавин Вадим.9 «Б» класс Многоугольники в природе.В природе часто встречаются разнообразные правильные многоугольники. Это могут быть Примеры многоугольников в природе.Примерами правильных многоугольников в природе могут служить:Пчелиные соты, снежинки Пчелиные соты.Пчелиные соты состоят из шестиугольников. Но почему пчелы «выбрали» для ячеек Снежинки.Снежинки могут иметь форму треугольника или шестиугольника. Но почему только эти две Сложные молекулы углерода. Также примером многоугольников в природе могут служить некоторые сложные молекулы углерода. Здание Пентагона. А вот еще один пример многоугольников. Но уже созданный не Здание Пентагона Паркеты из правильных многоугольниковВ математике паркетом называют «замощение» плоскости повторяющимися фигурами без Конец
Слайды презентации

Слайд 2 Многоугольники в природе.
В природе часто встречаются разнообразные правильные

Многоугольники в природе.В природе часто встречаются разнообразные правильные многоугольники. Это могут

многоугольники. Это могут быть треугольники, четырехугольнике, пятиугольники и т.д.

Виртуозно компонуя их, природа создала бесконечное множество сложных, удивительно красивых, легких, прочных и экономичных конструкций.


Слайд 3 Примеры многоугольников в природе.
Примерами правильных многоугольников в природе

Примеры многоугольников в природе.Примерами правильных многоугольников в природе могут служить:Пчелиные соты,

могут служить:
Пчелиные соты, снежинки и другие.

Рассмотрим их по подробней…


Слайд 4 Пчелиные соты.
Пчелиные соты состоят из шестиугольников. Но почему

Пчелиные соты.Пчелиные соты состоят из шестиугольников. Но почему пчелы «выбрали» для

пчелы «выбрали» для ячеек на сотах именно форму правильных

шестиугольников?
Из правильных многоугольников с одинаковой площадью наименьший периметр у правильных шестиугольников. При такой «математической» работе пчёлы экономят 2% воска. Количество воска сэкономленного при постройке 54 ячеек, может быть использовано для постройки одной такой же ячейки. Стало быть, мудрые пчёлы экономят воск и время для постройки сот.

Слайд 5 Снежинки.
Снежинки могут иметь форму треугольника или шестиугольника. Но

Снежинки.Снежинки могут иметь форму треугольника или шестиугольника. Но почему только эти

почему только эти две формы?
Так получилось, что молекула воды

состоит из трех частиц – двух атомов водорода и одного атома кислорода. Поэтому при переходе частицы воды из жидкого состояния в твердое, ее молекула соединяется с другими молекулами воды, и образует только трех – или шестиугольную фигуру.

Слайд 6 Сложные молекулы углерода.
Также примером многоугольников в природе

Сложные молекулы углерода. Также примером многоугольников в природе могут служить некоторые сложные молекулы углерода.

могут служить некоторые сложные молекулы углерода.


Слайд 7 Здание Пентагона.
А вот еще один пример многоугольников.

Здание Пентагона. А вот еще один пример многоугольников. Но уже созданный

Но уже созданный не природой, а человеком. Это здание

Пентагона. Он имеет форму пятиугольника.
Но почему здание Пентагона имеет такую форму?
Пятиугольную форму здания подсказал план местности, когда создавались эскизы проекта. В том месте проходило несколько дорог, которые пересекались под углом 108 градусов, а это и есть угол построения пятиугольника. Поэтому такая форма органично вписывалась в транспортную инфраструктуру, и проект был утвержден.


Слайд 8 Здание Пентагона

Здание Пентагона

Слайд 9 Паркеты из правильных многоугольников
В математике паркетом называют «замощение»

Паркеты из правильных многоугольниковВ математике паркетом называют «замощение» плоскости повторяющимися фигурами

плоскости повторяющимися фигурами без пропусков и перекрытий. Простейшие паркеты

были открыты пифагорейцами около 2500 лет тому назад.
Они установили, что вокруг одной точки могут лежать либо шесть правильных многоугольников, либо четыре квадрата, либо три правильных шестиугольника.

  • Имя файла: pravilnye-mnogougolniki-v-prirode-parkety-iz-pravilnyh-mnogougolnikov.pptx
  • Количество просмотров: 125
  • Количество скачиваний: 0