Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Развитие математики в Древнем Китае

По древним преданиям, основам счета китайцев научил мифический первопредок Фуси. Его часто изображают держащим в руках угольник (цзюй). На изображениях рядом с ним находится его жена Нюйва, держащая в руке циркуль (гуй). Как показывают надписи на
Развитие математики в Древнем КитаеБаганова Елена Николаевна ГБОУ СОШ №892 г. Москва Учитель ИиИКТ По древним преданиям, основам счета китайцев научил мифический первопредок Фуси. Его часто Первые дошедшие до нас китайские письменные памятники относятся к эпохе Шан (XVIII—XII вв. Цифры обозначались специальными иероглифами, которые появились во II тысячелетии до н. э., и Записывались цифры начиная с больших значений и заканчивая меньшими. Если десятков, единиц, Развитие науки продолжилось после того, как в XI в. до н. э. династию Шан С воцарением династии Хань (208 до н. э. — 220 н. э.) древние знания стали 方田 Фан тянь, «Измерение полей» — Вычисление площадей: треугольники, многоугольники, круг, сегменты и 盈不足 Ин бу цзу, «Избыток-недостаток» – правила решения систем двух линейных уравнений с 方程 Фан чэн , Решение систем произвольного числа линейных уравнений. В ряде примеров В ходе промежуточных вычислений по этому методу появились отрицательные числа. Для китайских 勾股 Гоу гу — Теорема Пифагора и её приложения.Китайская версия пифагоровой тройки: 3 × 4 × 5 618 – 907 г. н.э. (династия Тан) – математику изучают в
Слайды презентации

Слайд 2 По древним преданиям, основам счета китайцев научил мифический

По древним преданиям, основам счета китайцев научил мифический первопредок Фуси. Его

первопредок Фуси. Его часто изображают держащим в руках угольник

(цзюй). На изображениях рядом с ним находится его жена Нюйва, держащая в руке циркуль (гуй).

Как показывают надписи на гадательных костях, уже в XVIII до н.э. циркуль использовался для вычерчивания круга, а угольник - прямых углов, в частности, углов квадрата.
Со временем круг и квадрат стали символами принципов ян и инь.


Слайд 3 Первые дошедшие до нас китайские письменные памятники относятся

Первые дошедшие до нас китайские письменные памятники относятся к эпохе Шан

к эпохе Шан (XVIII—XII вв. до н. э.). И уже на

гадальных костях XIV в. до н. э., найденных в Хэнани, сохранились обозначения цифр.

Слайд 4 Цифры обозначались специальными иероглифами, которые появились во II

Цифры обозначались специальными иероглифами, которые появились во II тысячелетии до н. э.,

тысячелетии до н. э., и начертание их окончательно установилось к

III в. до н. э

Слайд 5 Записывались цифры начиная с больших значений и заканчивая

Записывались цифры начиная с больших значений и заканчивая меньшими. Если десятков,

меньшими. Если десятков, единиц, или какого-то другого разряда не

было, то сначала ничего не ставили и переходили к следующему разряду.
Во времена династии Мин был введен знак для пустого разряда - кружок - аналог нашего нуля. Чтобы не перепутать разряды использовали несколько служебных иероглифов, писавшихся после основного иероглифа, и показывающих какое значение принимает иероглиф-цифра в данном разряде.
Вот несколько служебных иероглифов:

Примеры записи чисел:


Слайд 6 Развитие науки продолжилось после того, как в XI в.

Развитие науки продолжилось после того, как в XI в. до н. э. династию

до н. э. династию Шан сменила династия Чжоу. В эти

годы возникают китайская математика и астрономия.
Появились первые точные календари и учебники математики. Тогда была разработана система обучения математике детей 6-8 лет. Для запоминания таблицы умножения существовала специальная песня, которую ученики заучивали наизусть.

«Истребление книг» императором Цинь Ши Хуаном (Ши Хуанди) в 213 г. ( он приказал сжечь все книги, за исключением тех, что трактовали о сельском хозяйстве, медицине и гаданиях) не позволило ранним книгам дойти до нас, однако они, скорее всего, легли в основу последующих трудов.


Слайд 7 С воцарением династии Хань (208 до н. э. — 220

С воцарением династии Хань (208 до н. э. — 220 н. э.) древние знания

н. э.) древние знания стали восстанавливать и развивать.
Во II в. до

н. э. опубликованы наиболее древние из дошедших до нас сочинений — математико-астрономический «Трактат об измерительном шесте» и фундаментальный труд «Математика в девяти книгах».
Престиж математики в Китае был высок. Каждый чиновник, чтобы получить назначение на пост, сдавал, помимо прочих, и экзамен по математике, где обязан был показать умение решать задачи из классических сборников.

Книга была окончательно отредактирована финансовым чиновником Чжан Цаном (умер в 150 г. до н. э.) и предназначена для землемеров, инженеров, чиновников и торговцев. В ней собраны 246 задач, изложенных в традиционном восточном духе, т.е рецептурно: формулируется задача, сообщается готовый ответ и (очень кратко и не всегда) указывается способ решения.


Слайд 8 方田 Фан тянь, «Измерение полей» — Вычисление площадей: треугольники,

方田 Фан тянь, «Измерение полей» — Вычисление площадей: треугольники, многоугольники, круг, сегменты

многоугольники, круг, сегменты и секторы круга, круговое кольцо .

Операции с дробями. Алгоритм поиска наибольшего общего делителя двух чисел, аналогичный евклидовскому.
粟米 Су ми, «Соотношение злаков» — Правила обмена и торговли, в основном для зерновых культур (задачи на пропорции).
衰分 Шуай фэнь, «Деление по ступеням» — Пропорциональное распределение товара.
少廣 Шао гуан , Теория делимости. Извлечение квадратных и кубических корней. Измерение круга, сферы и шара.
商功 Шан гун, «Оценка работ» — Объёмы различных тел: параллелепипед, призма, пирамида, цилиндр, конус. Расчёт трудозатрат при строительстве.
均輸 Цзюнь шу, «Пропорциональное распределение» — Дополнительные сведения о пропорциональном распределении и задачи разного характера:бассейн, встречи, зерновые поставки, дальность перевозки и т.д..

Математика в девяти книгах

Каждая из 9 глав (книг) представляет собой завершённый текст, не ссылающийся на другие главы.


Слайд 9
盈不足 Ин бу цзу, «Избыток-недостаток» – правила решения систем

盈不足 Ин бу цзу, «Избыток-недостаток» – правила решения систем двух линейных уравнений

двух линейных уравнений с двумя неизвестными.

Рассматривались три случая, т.к. все
коэффициенты положительны. Один из них:
a1x = y + d1,
a2x = y – d2;
d1 – избыток, d2 – недостаток; a1, a2 (a1>a2) – нормы.
Правило решения: отложить на доске вносимые нормы, под ними избыток и недостаток. Перемножить те и другие крест накрест и составить ши (сумма произведений), фа (сумма избытка и недостатка):
a1 a2 ши = a1d2 + a2d1
d1 d2 фа = d1 + d2
Затем составить разность большей и меньшей норм a1 – a2. Частное от деления
ши и фа на разности норм дают стоимость вещи (х) и число покупателей (y):
x = (d1 + d2)/ (a1 – a2) ; y = (a1d2 + a2d1)/(a1 – a2)
Это аналог правила Крамера.

Слайд 10 方程 Фан чэн , Решение систем произвольного числа линейных

方程 Фан чэн , Решение систем произвольного числа линейных уравнений. В ряде

уравнений. В ряде примеров используются отрицательные числа (аналог метода

Гаусса).

Задача: 3 снопа хорошего, 2 среднего и 1 плохого урожая дают вместе 39 доу зерна. 2 снопа хорошего, 3 среднего и 1 плохого – 34 доу зерна. 1 сноп хорошего, 2 среднего и 3 плохого – 26 доу зерна. Сколько зерна дает сноп каждого из урожаев?
Решение: х – хороший, у – средний, z – плохой.
1 2 3 1 3 3 3
2 3 2 ? 2 5 2 ? 4 5 2 ? 5 2
3 1 1 3 1 1 3 1 1 36 1 1 ? z = 99/36, y = 153/36, x = 333/36.
-------- -------- -------- ---------
26 34 39 26 34 39 39 24 39 99 24 34

Слайд 11 В ходе промежуточных вычислений по этому методу появились

В ходе промежуточных вычислений по этому методу появились отрицательные числа. Для

отрицательные числа.
Для китайских математиков это был шок. Ведь

ответ был верным и положительным. Они долго не знали как с ними поступать:
Ставили перед каждым отрицательным числом иероглиф «не»;
Зачеркивали последний знак;
Писали другими чернилами и т.д.
Именно китайцам принадлежат разработанные правила обращения с отрицательными числами. Но, например, не было деления двух отрицательных чисел, т.к. это не требовалось в процессе работы метода Гаусса.


Слайд 12 勾股 Гоу гу — Теорема Пифагора и её приложения.



Китайская

勾股 Гоу гу — Теорема Пифагора и её приложения.Китайская версия пифагоровой тройки: 3 × 4 × 5

версия пифагоровой тройки: 3 × 4 × 5


  • Имя файла: razvitie-matematiki-v-drevnem-kitae.pptx
  • Количество просмотров: 115
  • Количество скачиваний: 0
Следующая - 12345