FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.
Email: Нажмите что бы посмотреть
Солнце разлито поровну,
Вернее, по справедливости,
Вернее, по стольку разлито,
Кто сколько способен взять.
В одного человека – поменьше,
В другого – гораздо больше,
А в некоторых – очень много.
Спит, затаившись до времени.
Можно руку смело пожать этим людям
Не надевая брезентовые рукавицы…
Но в минуты,
Когда не только что Солнца –
Звезды не найдёшь вокруг,
Когда людям в потёмках
Становится страшно и зябко,
Вдруг появляется пламя,
Разгорается постепенно, но ярко
Люди глядят, приближаются
Сходятся, улыбаются,
Руке подавая руку,
Приветом встречая привет.
Мы просто перейдём к другой звезде,
Когда вот эта, наша, станет меркнуть,
Темно на сердце, но в соседнем сердце
Горит огонь и греет нас в беде.
Мы сменим солнце на другое пламя,
Другому солнцу сердце отдадим,
И небосвод расступится над нами,
И мы привыкнем к зрелищам другим.
Захария Станку.
Светило гордое, всего питатель мира,
Блистающее к нам с небесной высоты!
О, если бы взыграть могла моя мне лира
Твои достойно красоты!
Александр Сумароков
Пускай это бурное море огня
Зовут лучезарным светилом
Как в детстве, оно для тебя и меня
Останется солнышком милым.
С.Я. Маршак.
От солнца исходит свет, и от земли падает тень, оттого и сознание человека определяется двойственно: всё вдвойне, и даже свет добра бросает от себя тенью зло. Но солнце едино, и оно является в человеческом мире добра и зла вестником единства и образует в нашем сознании небо – царство света, где нет места и времени, порождающих тень при встрече со светом.
М. Пришвин.
Спиральные ветви содержат множество звезд высокой светимости и массы. А если масса звезды велика, порядка десятка масс Солнца, ее ждет незавидная судьба, заканчивающаяся грандиозной космической катастрофой – взрывом, называемым вспышкой сверхновой звезды. При этом вспышка бывает настолько сильной, что эта звезда светит, как все звезды Галактики вместе взятые. Такие катастрофы астрономы часто фиксируют в других галактиках, однако в нашей последние несколько сот лет подобного не происходит. При взрыве сверхновой возникает мощная волна жесткого излучения, способная уничтожить все живое на своем пути. Может быть именно из-за уникального положения в Галактике нашей цивилизации удалось развиться до такой степени, что ее представители пытаются познать свой звездный остров. Получается, что возможных братьев по разуму можно искать только в тихих галактических «закутках», наподобие нашего.
Характерная особенность В. на С. состоит в том, что осн. часть её энергии выделяется в виде кинетич. энергии выбросов вещества, движущихся в короне и межпланетном пространстве со скоростями до 1000 км/с, энергии жёсткого эл.-магн. излучения и потоков ускоренных до гигантских энергий (иногда десятки ГэВ) частиц (см. табл.). Радиоизлучение вспышки, в отличие от излучения спокойного Солнца (см. Радиоизлучение Солнца), также свидетельствует о наличии ускоренных частиц и о нетепловом характере главного вспышечного процесса или, как часто говорят, механизма вспышки.
Излучение В. на С. наблюдается в широком диапазоне - от километровых радиоволн до жёстких гамма-лучей - с помощью наземных, спутниковых и межпланетных станций. Одновременно осуществляется непосредств. детектирование ускоренных во вспышках электронов, протонов, ядер более тяжёлых элементов и выбрасываемой в межпланетное пространство плазмы, а также вторичных ионосферных и геомагн. эффектов.
На протяжении многих десятилетий наблюдения В. на С. велись только в видимом диапазоне эл.-магн. излучения, гл. обр. в линии Нa. Накопленный за это время огромный материал позволил установить закономерности развития вспышки в хромосфере и, что особенно важно для понимания механизма вспышки, её тесную связь с магн. полями на поверхности Солнца. Обычно большая вспышка наблюдается как увеличение яркости хромосферы, к-рое охватывает большую площадь (иногда до 10-3 площади видимой полусферы Солнца) в виде двух вспышечных лент. Как правило, эти ленты расположены в областях магн. полей противоположной полярности на фотосфере. Уже первые внеатмосферные наблюдения на ракетах и спутниках показали, что В. на С., если иметь в виду её главный процесс, представляют собой специфически корональное, а не хромосферное явление.
В мощных вспышках наблюдается жёсткое рентг. излучение в диапазоне энергий от десятков до сотен кэВ. Это излучение регистрируется как серия отдельных импульсов во время жёсткой фазы вспышки, предшествующей максимуму излучения. Оно генерируется большим числом электронов, ускоренных при вспышках. В самых мощных, т. н. протонных, вспышках ускоряются и тяжёлые частицы, в частности протоны, до энергий в сотни МэВ.
Начало вспышки может быть очень резким, но иногда "взрыву" предшествует неск. минут медленного развития или даже слабая предвспышка. Далее идёт собственно взрывная (жёсткая, импульсная) фаза, во время к-рой за 1-3 мин ускоряются частицы, формируется горячее облако. В ряде вспышек (их называют тепловыми) жёсткая фаза отсутствует. После достижения макс. яркости (напр., в мягком рентг. излучении через 1-15 мин после начала) процесс горения большой вспышки продолжается ещё неск. часов. На фазе спада характерным явл. формирование и движение вверх всей системы волокон, многочисленные выбросы плазменных сгустков. Так, при наблюдении вспышки за краем диска заметны массы газа, разлетающиеся из яркого выступа - системы петель - со скоростями, превышающими 100 км/с.
Рентг. излучение и солнечные космические лучи, приходящие от вспышки (рис. 13), вызывают дополнительную ионизацию земной ионосферы, что сказывается на условиях распространения радиоволн. Поток выброшенных при вспышке частиц примерно через сутки достигает орбиты Земли и вызывает на Земле магнитную бурю и полярные сияния
Помимо корпускулярных потоков, порождённых вспышками, существует непрерывное корпускулярное излучение С. Оно связано с истечением разреженной плазмы из внеш. областей солнечной короны в межпланетное пространство - солнечным ветром. Потери вещества за счёт солнечного ветра невелики,≈ 3.10-14 в год, но он представляет собой осн. компонент межпланетной среды.
Меридиональный разрез межпланетного магнитного поля (стрелки) близ чётного минимума солнечной активности.
По поверхности, разделяющей северный и южный магнитные потоки, течёт электрический ток.
Близ максимума активности наиболее эффективно воздействуют на атмосферу и магнитосферу Земли потоки частиц, ускоренных при вспышках. На фазе спада активности, к концу 11-летнего цикла активности, при уменьшении числа вспышек и развитии межпланетного токового слоя становятся более существенными стационарные потоки усиленного солнечного ветра. Вращаясь вместе с С., они вызывают повторяющиеся каждые 27 сут геомагн. возмущения. Эта рекуррентная (повторяющаяся) активность особенно высока для концов циклов с чётным номером, когда направление магн. поля солнечного "диполя" антипараллельно земному.
Солнечная поверхность, наблюдаемая в телескоп в видимом диапазоне длин волн, представляется совокупностью ярких площадок, окружённых относительно тёмными тонкими промежутками. Это - солнечные гранулы (рис. 6), их размеры различны и составляют в среднем ≈ 700 км, "время жизни" (появление и угасание гранулы) ≈ 8 мин. Гранулы разделяются тёмными промежутками шириной ок. 300 км. Флуктуации яркости, вызываемые грануляцией, невелики. Превышение яркости над ср. фоном 10%.
Грануляция
солнечной фотосферы.
Часто в областях, располагающихся в зоне ± 30o от экватора, кроме спокойной грануляционной картины наблюдаются солнечные пятна и факелы. Телескоп позволяет различать тёмный овал (т.н. тень пятна), окружённый более светлой полутенью (pиc. 7). Характерный размер развитого пятна составляет ≈ 35000 км. Диаметр тени примерно вдвое меньше. Близ тени появляются отдельные яркие участки, к-рые в виде узких струй (диаметр D ≈ 700 км) растекаются к периферии пятна. Они образуют характерную волокнистую структуру полутени. Время жизни отдельных волокон ≈ 30-60 мин. В самой тени пятна также наблюдаются слабоконтрастные флуктуации яркости - очень маленькие светлые точки (D ≈ 350 км), живущие 15-30 мин. Их отождествляют с "остаточной" грануляцией в условиях сильного магн. поля тени пятна. Поток лучистой энергии в тени пятна ослаблен примерно в 3 раза, что явл. следствием понижения темп-ры от 6000 до 4500 К. Это понижение темп-ры отражается и на спектре пятен: усилены спектр. линии более низкого возбуждения, молекулярные полосы. Видно также, что линии несколько сдвинуты в коротковолновую область. Это позволяет установить (на основе Доплера эффекта), что на уровне фотосферы (в области образования изучаемых линий) газ вытекает из пятна (эффект Эвершеда). Движение наружу - от тени к периферии - характер, но лишь для тёмных, холодных волокон - более горячий газ медленно движется в противоположном направлении. В полутени направление движения близко к горизонтальному. На больших высотах - в хромосфере и короне - газ, наоборот, втекает в область пятна.
Солнечное пятно
Распределение температуры Т, концентрации нейтрального водорода n и свободных электронов ne в фотосфере и нижней хромосфере (h - высота в км).
Распределение темп-ры и плотности с высотой в фотосфере и нижней хромосфере приведено на рисунке. Поскольку в факеле при оптической толще 0,1-1 температура несколько выше, чем на тех же уровнях в фотосфере, градиент температуры - скорость её уменьшения с высотой - в факеле меньше, чем в фотосфере.
Хромосфера вне диска С. (за лимбом) представляется излучающим (эмиссионным) слоем протяжённостью ≈ 10 000 км. Нижняя хромосфера (от края С. до высот ≈ 1500 км) излучает слабый непрерывный спектр, на фоне к-рого видны многочисленные, в основном слабые, эмиссионные линии. В проекции на диск С. они наблюдаются как линии поглощения на ярком фоне фотосферного излучения. Характеристики эмиссионного спектра позволяют определить физ. условия в нижней хромосфере (см. Линейчатое излучение). Данные наблюдений линий нейтрального железа (FeI), титана (TiI) и т. д. говорят о низкой темп-ре этого слоя (Т ≈ 5000 К); по интенсивности линий можно найти n - число атомов в 1 см3. Напр., на высоте ~1000 км число атомов водорода nH ~ 1013 см-3.