Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Основы индуктивного подхода

Метод математической индукции.Одним из самых важных методов математических доказательств является метод математической индукции. Подавляющее большинство формул, относящихся ко всем натуральным числам n, могут быть доказаны методом математической индукции (к примеру, формула суммы n первых членов арифметической прогрессииИндукцией называют переход от
Основы индуктивного подходаМЮИ Группа МОС. 2015. 09. Б+.с. З.В / СО-2015  Олой Анастасия Метод математической индукции.Одним из самых важных методов математических доказательств является метод математической Пример частного утверждения: 254 делится на 2 без остатка. Из этого частного утверждения можно В основе метода математической индукции лежит принцип математической индукции.Он заключается в следующем: некоторое Вернемся к предыдущему примеру и докажем формулу   Метод математической индукции предполагает Так как          из второго пункта,
Слайды презентации

Слайд 2 Метод математической индукции.
Одним из самых важных методов математических

Метод математической индукции.Одним из самых важных методов математических доказательств является метод

доказательств является метод математической индукции. Подавляющее большинство формул, относящихся

ко всем натуральным числам n, могут быть доказаны методом математической индукции (к примеру, формула суммы n первых членов арифметической прогрессии

Индукцией называют переход от частных утверждений к общим. Напротив, переход от общих утверждений к частным называется дедукцией.


Слайд 3 Пример частного утверждения: 254 делится на 2 без остатка. Из этого частного утверждения

Пример частного утверждения: 254 делится на 2 без остатка. Из этого частного утверждения можно

можно сформулировать общие , причем как истинные, так и

ложные. Более общее утверждение: все целые числа, оканчивающиеся четверкой, делятся на 2 без остатка, является истинным, все трехзначные числа делятся на 2 без остатка, является ложным. Индукция позволяет получить общие утверждения на основе известных или очевидных фактов, и установить их истинность (ложность)

Рассмотрим числовую последовательность: 

n – произвольное натуральное число. Тогда последовательность сумм первых n элементов этой последовательности будет следующая

Исходя из этого факта, по индукции можно утверждать, что


Слайд 4 В основе метода математической индукции лежит принцип математической индукции.
Он

В основе метода математической индукции лежит принцип математической индукции.Он заключается в следующем:

заключается в следующем: некоторое утверждение справедливо для всякого натурального n,

если
оно справедливо для n = 1 и
из справедливости утверждения для какого-либо произвольного натурального n = k следует его справедливость для n = k+1.
То есть, доказательство по методу математической индукции проводится в три этапа:
во-первых, проверятся справедливость утверждения для любого натурального числа n (обычно проверку делают для n = 1);
во-вторых, предполагается справедливость утверждения при любом натуральном n=k;
в-третьих, доказывается справедливость утверждения для числа n=k+1, отталкиваясь от предположения второго пункта.


Слайд 5 Вернемся к предыдущему примеру и докажем формулу  Метод математической

Вернемся к предыдущему примеру и докажем формулу  Метод математической индукции предполагает

индукции предполагает доказательство в три пункта Проверим равенство для n =

1. Имеем  Это равенство верное. Предположим, что  есть справедливая формула. Докажем, что  отталкиваясь от справедливого равенства из второго пункта. Сумма k+1 первых членов последовательности представляется как сумма первых k членов исходной числовой последовательности и k+1 ого члена:

  • Имя файла: osnovy-induktivnogo-podhoda.pptx
  • Количество просмотров: 99
  • Количество скачиваний: 0