Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Формула решения квадратных уравнений

Содержание

Вступление.Данная работа может быть использована на обобщающем уроке по теме «Решение квадратных уравнений»с целью повторения и обобщения изученного материалаОтдельные части работы могут быть использованы и на обучающих уроках или во внеклассной работе с целью ознакомления с
Материал к урокам алгебры в 8 классе по теме:Квадратные уравнения. Их решение по формуле. Вступление.Данная работа может быть использована на обобщающем уроке по теме «Решение квадратных Содержание:Теоретический материалПримеры решения квадратных уравнений по формулеПроверим знания (тест)КроссвордЭто интересно (дополнительные сведения Теоретические сведенияОпределение квадратного уравненияПримеры квадратных уравнений.Алгоритм решения квадратного уравнения по формуле Определение квадратного уравнения.Квадратным уравнением называется уравнение вида ах²+вх+с=0, где х – переменная, Примеры квадратных уравнений:Например: а) –х²+6х+1,2=0, где а=-1, в=6, с=1,2; б) 5х²-2=0 – Алгоритм решения квадратного уравнения:ах²+вх+с=0Определить коэффициенты а,в,сЕсли D0, то1 кореньУравнение не имеет корней Примеры решения квадратных уравнений по формулеПример1: 3х²+11х+6=0  а=3; в=11;с=6.D=11²-4*3*6=121-72=49>0 – уравнение имеет 2 корня Примеры решения квадратных уравнений по формуле:Пример2. 9х²-6х+1=0а=9; в=-11;с=1.D=(-6)²-4*9*1=36-36=0=0 – уравнение имеет 1 корень.Х= Примеры решения квадратных уравнений по формуле:Пример 3: -2х²+3х-5=0а=-2; в=3;с=-5.D=3²-4*(-2)*5=9-40=-31 ТестТест 1. Установить, истинны или ложны утверждения.Тест 2. Установить верный ответ из числа предложенных. Тест 1. Установите, истинны или ложны следующие утверждения :Ответы давать : да Тест 2. Выбрать правильный ответ из предложенных вариантов:Время для выполнения – 15 Кроссворд1. Уравнение вида ах²+вх+с=о2.Квадратные уравнения, у которых первый коэффициент равен 1.3. Уравнения Это интересно (дополнительные сведения о нахождении корней квадратного уравнения в особых случаях):1 Стихотворение для запоминания формулы «Пэ», со знаком взяв обратным,На два мы его Из истории решения квадратных уравнений.Уравнения 2-ой степени умели решать еще в Древнем Формула корней квадратного уравнения «переоткрывалась» неоднократно. Один из первых дошедших до наших Вывод формулы корней квадратного уравнения ал-Хорезми:Суть его рассуждений видна из рисунка (рассматривается Задача из китайского трактата «Математика в девяти книгах»(примерно II в.до н.э.)«Имеется город Решение задачи о границах города:Обозначим сторону квадрата через х. Из подобия треугольников Проверь себя ( решение задачи при помощи языка программирования):Программа, позволяющая решать квадратные уравнения (язык Turbo Pascal) Использованная литература:Алтынов П.А. Тесты. Алгебра.7-9 – Москва, «Дрофа», 2002 годМакарычев Ю.Н. Алгебра, Брахмагупт(около 598-660 г.г.)Индийский математик и астроном. Основное сочинение «Усовершенствованное учение Брахмы» («Брахмаспхутасиддханта», Диофант Александрийский  (около 3 в.).Древнегреческий математик. В основном труде «Арифметика» (сохранились Евклид (3 в. До н.э.)Древнегреческий математик, работал в Александрии. Лавный труд «Начала»(15 Аль-Хорезми. Наибольших успехов в математике достиг согдиец Мухаммед ибн Муса аль-Хорезми (то Ответы к кроссворду:1. Квадратное.2. Приведенное.3. Равносильное.4. Коэффициент.5. Корень.6. Уравнение.7. Арифметический.8. Диофант.9. Неполное.10. Ответы к тесту 1.Вариант 1. 1,2,3,4,10-да; 5,6,7 – нет.Вариант 2. 1,3,4,10 – да; 2,5,6,7 - нет Ответ к тесту 2.Вариант 1. 1 -г , 2-г , 3 -
Слайды презентации

Слайд 2 Вступление.
Данная работа может быть использована на обобщающем уроке

Вступление.Данная работа может быть использована на обобщающем уроке по теме «Решение

по теме «Решение квадратных уравнений»с целью повторения и обобщения

изученного материала
Отдельные части работы могут быть использованы и на обучающих уроках или во внеклассной работе с целью ознакомления с дополнительными сведениями.



Слайд 3 Содержание:
Теоретический материал
Примеры решения квадратных уравнений по формуле
Проверим знания

Содержание:Теоретический материалПримеры решения квадратных уравнений по формулеПроверим знания (тест)КроссвордЭто интересно (дополнительные

(тест)
Кроссворд
Это интересно (дополнительные сведения о решении квадратных уравнений)
Из истории

решения квадратных уравнений
Проверь себя (решение квадратного уравнения при помощи языка программирования)
Использованная литература



Слайд 4 Теоретические сведения
Определение квадратного уравнения
Примеры квадратных уравнений.
Алгоритм решения квадратного

Теоретические сведенияОпределение квадратного уравненияПримеры квадратных уравнений.Алгоритм решения квадратного уравнения по формуле

уравнения по формуле


Слайд 5 Определение квадратного уравнения.
Квадратным уравнением называется уравнение вида ах²+вх+с=0,

Определение квадратного уравнения.Квадратным уравнением называется уравнение вида ах²+вх+с=0, где х –

где х – переменная, а,в,с – некоторые числа, причем

а≠0.
Числа а, в, с – коэффициенты квадратного уравнения. Число а – первый коэффициент, в – второй коэффициент, с – свободный член.
Если в квадратном уравнении ах²+вх+с=0 хотя бы один из коэффициентов в или с равен нулю, то такое уравнение называется неполным квадратным уравнением.
Квадратное уравнение, в котором коэффициент а=1 называется приведенным квадратным уравнением.




Слайд 6 Примеры квадратных уравнений:
Например: а) –х²+6х+1,2=0, где а=-1, в=6,

Примеры квадратных уравнений:Например: а) –х²+6х+1,2=0, где а=-1, в=6, с=1,2; б) 5х²-2=0

с=1,2;
б) 5х²-2=0 – неполное квадратное уравнение, где

а=5, в=0, с=-2;
в) -3х²+7х=0 - неполное квадратное уравнение, где а=-3, в=7, с=0;
г) 7х²=0 - неполное квадратное уравнение, где а=7, в=0, с=0;
д) х²+4х-12=0 – приведенное квадратное уравнение, где а=1, в=4, с=-12.





Слайд 7 Алгоритм решения квадратного уравнения:
ах²+вх+с=0
Определить
коэффициенты а,в,с
Если D

Алгоритм решения квадратного уравнения:ах²+вх+с=0Определить коэффициенты а,в,сЕсли D0, то1 кореньУравнение не имеет корней

дискриминант
D=в²-4ас
Если D=0, то

2 корня
Если D>0, то

1 корень
Уравнение не
имеет

корней




Слайд 8 Примеры решения квадратных уравнений по формуле
Пример1: 3х²+11х+6=0

Примеры решения квадратных уравнений по формулеПример1: 3х²+11х+6=0 а=3; в=11;с=6.D=11²-4*3*6=121-72=49>0 – уравнение имеет 2 корня

а=3; в=11;с=6.
D=11²-4*3*6=121-72=49>0 – уравнение имеет 2 корня




Слайд 9 Примеры решения квадратных уравнений по формуле:
Пример2. 9х²-6х+1=0
а=9; в=-11;с=1.
D=(-6)²-4*9*1=36-36=0=0

Примеры решения квадратных уравнений по формуле:Пример2. 9х²-6х+1=0а=9; в=-11;с=1.D=(-6)²-4*9*1=36-36=0=0 – уравнение имеет 1 корень.Х=

– уравнение имеет 1 корень.

Х=



Слайд 10 Примеры решения квадратных уравнений по формуле:
Пример 3: -2х²+3х-5=0
а=-2;

Примеры решения квадратных уравнений по формуле:Пример 3: -2х²+3х-5=0а=-2; в=3;с=-5.D=3²-4*(-2)*5=9-40=-31

в=3;с=-5.
D=3²-4*(-2)*5=9-40=-31


Слайд 11 Тест
Тест 1. Установить, истинны или ложны утверждения.
Тест 2.

ТестТест 1. Установить, истинны или ложны утверждения.Тест 2. Установить верный ответ из числа предложенных.

Установить верный ответ из числа предложенных.


Слайд 12 Тест 1. Установите, истинны или ложны следующие утверждения

Тест 1. Установите, истинны или ложны следующие утверждения :Ответы давать :

:
Ответы давать : да или нет. Время для выполнения

– 10 минут.
Указание: не выполнять задания 8 и 9.
Текст теста:




Слайд 13 Тест 2. Выбрать правильный ответ из предложенных вариантов:
Время

Тест 2. Выбрать правильный ответ из предложенных вариантов:Время для выполнения –

для выполнения – 15 минут.
Указание: не выполнять задания 6

и 7.
Текст теста:




Слайд 14 Кроссворд
1. Уравнение вида ах²+вх+с=о
2.Квадратные уравнения, у которых первый

Кроссворд1. Уравнение вида ах²+вх+с=о2.Квадратные уравнения, у которых первый коэффициент равен 1.3.

коэффициент равен 1.
3. Уравнения с одной переменной, имеющие одни

и те же корни.
4. Числа а,в и с в квадратном уравнении.
5. Значение переменной, при котором уравнение обращается в верное равенство.
6. Равенство, содержащее неизвестное.
7. Неотрицательное значение квадратного корня.
8. Древнегреческий математик, который нашел приемы решения квадратных уравнений без обращения к геометрии.
9. Квадратное уравнение, в котором хотя бы один из коэффициентов в или с равен 0.
10. «Дискриминант» - по-латыни.
11. Коэффициент с квадратного уравнения.
12. Французский математик, который вывел формулы, выражающие зависимость корней уравнения от его коэффициентов.

Если вы разгадаете этот кроссворд верно, то сможете в выделенном вертикальном столбце прочитать термин, относящийся к теме.




Слайд 15 Это интересно (дополнительные сведения о нахождении корней квадратного

Это интересно (дополнительные сведения о нахождении корней квадратного уравнения в особых

уравнения в особых случаях):
1 случай. Если a+b+c=0, то х1=1;

х2= с/а
2 случай. Если a-b+c=0, то х1=-1; х2= -с/а
Нахождение корней приведенного квадратного уравнения: х²+px+q=0. здесь полезно воспользоваться формулой:


Формула запоминается надолго, если выучить ее в стихотворной форме:







Слайд 16 Стихотворение для запоминания формулы
«Пэ», со знаком взяв

Стихотворение для запоминания формулы «Пэ», со знаком взяв обратным,На два мы

обратным,
На два мы его разделим.
И от корня аккуратно
Знаком минут-плюс

отделим.
А под корнем, очень кстати,
Половина «пэ» в квадрате,
Минус «ку». И вот решенье
Небольшого уравненья.




Слайд 17 Из истории решения квадратных уравнений.
Уравнения 2-ой степени умели

Из истории решения квадратных уравнений.Уравнения 2-ой степени умели решать еще в

решать еще в Древнем Вавилоне во II тысячелетии до

н.э. Математики Древней Греции решали квадратные уравнения геометрически; например, ЕвклидУравнения 2-ой степени умели решать еще в Древнем Вавилоне во II тысячелетии до н.э. Математики Древней Греции решали квадратные уравнения геометрически; например, Евклид – при помощи деления отрезка в среднем и крайнем отношениях. Задачи, приводящие к квадратным уравнениям, рассматриваются во многих древних математических рукописях и трактатах. Например.




Слайд 18 Формула корней квадратного уравнения «переоткрывалась» неоднократно. Один из

Формула корней квадратного уравнения «переоткрывалась» неоднократно. Один из первых дошедших до

первых дошедших до наших дней выводов этой формулы принадлежит

индийскому математику Брахмагупте (около 598 г.).
Среднеазиатский ученый ал-ХорезмиСреднеазиатский ученый ал-Хорезми (IX в.) в трактате «Китаб аль-джебр валь -мукабала» получил эту формулу методом выделения полного квадрата с помощью геометрической интерпретации. См.подробнее.

Из истории решения квадратных уравнений.



Слайд 19 Вывод формулы корней квадратного уравнения ал-Хорезми:
Суть его рассуждений

Вывод формулы корней квадратного уравнения ал-Хорезми:Суть его рассуждений видна из рисунка

видна из рисунка (рассматривается решение уравнения х²+10х=39. Площадь большого

квадрата равна (х+5)². Она складывается из площади х²+10х фигуры, закрашенной голубым цветом, равной левой части рассматриваемого уравнения, и площади четырех квадратов со стороной 5/2, равной 25. Таким образом, (х+5)²=39+25; х1=3; х2=-13.

х²

5х/2

5х/2



Слайд 20 Задача из китайского трактата «Математика в девяти книгах»(примерно

Задача из китайского трактата «Математика в девяти книгах»(примерно II в.до н.э.)«Имеется

II в.до н.э.)
«Имеется город с границей в виде квадрата

со стороной неизвестного размера, в центре каждой стороны находятся ворота. На расстоянии 20 бу(1 бу=1,6 м) от северных ворот (вне города) стоит столб. Если пройти от южных ворот прямо 14 бу, затем повернуть на запад и пройти еще 1775 бу, то можно увидеть столб. Спрашивается: какова сторона границы города?»
Решение смотри здесь:



Слайд 21 Решение задачи о границах города:
Обозначим сторону квадрата через

Решение задачи о границах города:Обозначим сторону квадрата через х. Из подобия

х. Из подобия треугольников BED и ABC (см.рис.) получим:

k/0.5x=(k+x+l)/d.
Поэтому, чтобы определить неизвестную сторону квадрата, получаем квадратное уравнение х2+(k+l)-2kd=0.
В данном случае уравнение имеет вид х2+34х-71000=0, откуда х=25000 бу.
Отрицательных корней (в данном случае х=-284) китайские математики не рассматривали, хотя в этом же трактате содержатся операции с отрицательными числами.


l



Слайд 22 Проверь себя ( решение задачи при помощи языка

Проверь себя ( решение задачи при помощи языка программирования):Программа, позволяющая решать квадратные уравнения (язык Turbo Pascal)

программирования):
Программа, позволяющая решать квадратные уравнения (язык Turbo Pascal)


Слайд 23 Использованная литература:
Алтынов П.А. Тесты. Алгебра.7-9 – Москва, «Дрофа»,

Использованная литература:Алтынов П.А. Тесты. Алгебра.7-9 – Москва, «Дрофа», 2002 годМакарычев Ю.Н.

2002 год
Макарычев Ю.Н. Алгебра, 8 класс – Москва, «Просвещение»,

2000 год
Ткачева М.В. Домашняя математика, 8 класс- Москва, «Просвещение», 1996 год
Худадатова С.С. Математика в ребусах, кроссвордах – Москва, «Школьная Пресса», 2003 год
Энциклопедический словарь юного математика –Москва, «Педагогика», 1985 год
Энциклопедия «Я познаю мир. Математика» - Москва, АСТ, 1996 год.



Слайд 24 Брахмагупт(около 598-660 г.г.)
Индийский математик и астроном. Основное сочинение

Брахмагупт(около 598-660 г.г.)Индийский математик и астроном. Основное сочинение «Усовершенствованное учение Брахмы»

«Усовершенствованное учение Брахмы» («Брахмаспхутасиддханта», 628 г.), значительная часть которого

посвящена арифметике и алгебре. Брахмагупта , изложил общее правило решения квадратных уравнений, приведенных к единой канонической
форме:
ax2 + bх = с, а> 0. (1)
В уравнении (1) коэффициенты, кроме а, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.



Слайд 25 Диофант Александрийский (около 3 в.).
Древнегреческий математик. В основном

Диофант Александрийский (около 3 в.).Древнегреческий математик. В основном труде «Арифметика» (сохранились

труде «Арифметика» (сохранились 6 книг из 13), дал решение

задач, приводящихся к т.н. диофантовым уравнениям, и впервые ввел буквенную символику в алгебру.

Слайд 26 Евклид (3 в. До н.э.)
Древнегреческий математик, работал в Александрии.

Евклид (3 в. До н.э.)Древнегреческий математик, работал в Александрии. Лавный труд

Лавный труд «Начала»(15 книг), содержит основы античной математики, элементарной

геометрии, теории чисел, общей теории отношений и метода определения площадей и объемов, включавшего элементы теории пределов, оказал огромное влияние на развитие математики.



Слайд 27 Аль-Хорезми.
Наибольших успехов в математике достиг согдиец Мухаммед

Аль-Хорезми. Наибольших успехов в математике достиг согдиец Мухаммед ибн Муса аль-Хорезми

ибн Муса аль-Хорезми (то есть, родом из Хорезма -

с берегов Сыр-Дарьи). Он работал в первой половине 9 века и был любимцем ученейшего из халифов - Маамуна (сына знаменитого Гаруна ар-Рашида). Главная книга Хорезми названа скромно: "Учение о переносах и сокращениях", то есть техника решения алгебраических уравнений. По-арабски это звучит "Ильм аль-джебр ва"ль-мукабала"; отсюда произошло наше слово "алгебра".
Другое известное слово - "алгоритм", то есть четкое правило решения задач определенного типа - произошло от прозвания "аль-Хорезми". Третий известный термин, введенный в математику знаменитым согдийцем - это "синус", хотя в этом деле не обошлось без курьеза.
В алгебраическом трактате ал-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:
«Квадраты равны корням», т. е. ах2 = bх.
«Квадраты равны числу», т. е. ах2 = с.
«Корни равны числу», т. е. ах = с.
«Квадраты и числа равны корням», т. е. ах2 + с = bх.
«Квадраты и корни равны числу», т. е. ах2 + bх =с.
«Корни и числа равны квадратам», т. е. bх + с == ах2.
Для ал-Хорезми, избегавшего употребления отрицательных чисел, члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал-джабр и ал-мукабала. Его решение, конечно,не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида ал-Хорезми, как и все математики до XVII в., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений ал-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства.



Слайд 28 Ответы к кроссворду:
1. Квадратное.
2. Приведенное.
3. Равносильное.
4. Коэффициент.
5. Корень.
6.

Ответы к кроссворду:1. Квадратное.2. Приведенное.3. Равносильное.4. Коэффициент.5. Корень.6. Уравнение.7. Арифметический.8. Диофант.9.

Уравнение.
7. Арифметический.
8. Диофант.
9. Неполное.
10. Различитель.
11. Свободный.
12. Виет.
В выделенном столбце

: ДИСКРИМИНАНТ



Слайд 29 Ответы к тесту 1.
Вариант 1. 1,2,3,4,10-да; 5,6,7 –

Ответы к тесту 1.Вариант 1. 1,2,3,4,10-да; 5,6,7 – нет.Вариант 2. 1,3,4,10 – да; 2,5,6,7 - нет

нет.
Вариант 2. 1,3,4,10 – да; 2,5,6,7 - нет


  • Имя файла: formula-resheniya-kvadratnyh-uravneniy.pptx
  • Количество просмотров: 202
  • Количество скачиваний: 0