Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Уравнения

Содержание

Определения тригонометрических функцийСинусом угла х называетсяордината точки единичной окружности, полученной из точки (1; 0) поворотом на угол х
Урок 1Тригонометрические уравнения Определения тригонометрических функцийСинусом угла х называетсяордината точки единичной окружности, полученной из точки угол, принадлежащий промежутку        , Аркcинусом y=arcsinx Определения тригонометрических функцийКосинусом угла х называетсяабсцисса точки единичной окружности, полученной из точки угол, принадлежащий промежутку Аркосинусом числа m называетсяОбратные тригонометрические функциикосинус которого равен m y=arccosx Определения тригонометрических функцийТангенсом угла х называетсяотношение синуса к косинусу Обратные тригонометрические функцииугол, принадлежащий промежутку Арктангенсомом числа m называетсятангенс которого равен m Решение простейших уравненийРешим уравнение Решение простейших уравненийРешим уравнение Решение простейших уравненийРешим уравнение Решение простейших уравненийРешим уравнение mx Решение простейших уравненийРешим уравнение Методы решения уравнений Основные тригонометрические формулы Формулы приведенияПриведение к одной функцииРазложение на множители Решение простейших уравненийРешим уравнение Уравнение однородное, так как степени слагаемых, содержащих переменные одинаковые Решим уравнение Решим уравнение Решим уравнение Решим неравенство ДЗ 1	П 7 № 2.1, 4.1, 5.4, , 5.7 П 8 №1.2,
Слайды презентации

Слайд 2 Определения тригонометрических функций
Синусом угла х называется
ордината точки
единичной

Определения тригонометрических функцийСинусом угла х называетсяордината точки единичной окружности, полученной из

окружности,
полученной из точки (1; 0)
поворотом на угол

х



Слайд 4 угол, принадлежащий промежутку

угол, принадлежащий промежутку    , Аркcинусом числа m называетсяОбратные тригонометрические функциисинус которого равен m

,
Аркcинусом числа m называется
Обратные тригонометрические функции

синус

которого равен m

Слайд 5 y=arcsinx

y=arcsinx

Слайд 6 Определения тригонометрических функций
Косинусом угла х называется
абсцисса точки
единичной

Определения тригонометрических функцийКосинусом угла х называетсяабсцисса точки единичной окружности, полученной из

окружности,
полученной из точки (1; 0)
поворотом на угол

х

Слайд 8 угол, принадлежащий промежутку
Аркосинусом числа m называется
Обратные тригонометрические

угол, принадлежащий промежутку Аркосинусом числа m называетсяОбратные тригонометрические функциикосинус которого равен m

функции

косинус которого равен m


Слайд 9 y=arccosx

y=arccosx

Слайд 10 Определения тригонометрических функций
Тангенсом угла х называется
отношение синуса к

Определения тригонометрических функцийТангенсом угла х называетсяотношение синуса к косинусу

косинусу


Слайд 11 Обратные тригонометрические функции
угол, принадлежащий промежутку
Арктангенсомом числа m

Обратные тригонометрические функцииугол, принадлежащий промежутку Арктангенсомом числа m называетсятангенс которого равен m

называется
тангенс которого равен m


Слайд 12 Решение простейших уравнений
Решим уравнение

Решение простейших уравненийРешим уравнение

Слайд 13 Решение простейших уравнений
Решим уравнение

Решение простейших уравненийРешим уравнение

Слайд 15 Решение простейших уравнений
Решим уравнение

Решение простейших уравненийРешим уравнение

Слайд 16 Решение простейших уравнений
Решим уравнение
m
x

Решение простейших уравненийРешим уравнение mx

Слайд 17 Решение простейших уравнений
Решим уравнение

Решение простейших уравненийРешим уравнение

Слайд 18 Методы решения уравнений Основные тригонометрические формулы Формулы приведения
Приведение к одной

Методы решения уравнений Основные тригонометрические формулы Формулы приведенияПриведение к одной функцииРазложение на множители


функции
Разложение
на множители


Слайд 19 Решение простейших уравнений
Решим уравнение
Уравнение однородное,
так как

Решение простейших уравненийРешим уравнение Уравнение однородное, так как степени слагаемых, содержащих переменные одинаковые

степени слагаемых,
содержащих переменные одинаковые


Слайд 22 Решим уравнение

Решим уравнение

Слайд 23 Решим уравнение

Решим уравнение

Слайд 24 Решим уравнение

Решим уравнение

Слайд 25 Решим неравенство

Решим неравенство

  • Имя файла: uravneniya.pptx
  • Количество просмотров: 148
  • Количество скачиваний: 0
- Предыдущая Эпоха Возрождения
Следующая - Керамика