Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Действительные числа и их свойства

  Действительные числа образуют совокупность элементов, обладающую следующими свойствами.     Если a и b - действительные числа (алгебраические, рациональные, целые, положительные целые), то таковыми же являются иa + b и ab (замкнутость),     (1)a + b = b + a, ab
Действительные числаАвтор Павлов ВадимСтудент группы МОБ1-1   Действительные числа образуют совокупность элементов, обладающую следующими свойствами.     Если a и b - a + (-a) = a - a = 0, aa -1 = Действительными алгебраическими числами называются действительные корни алгебраических уравнений с целочисленными коэффициентами, а      Отношение тождества. Вообще говоря, уравнение относительно какой-либо величины x или нескольких величин Использованная литература взята из интернета
Слайды презентации

Слайд 2


Слайд 3   Действительные числа образуют совокупность элементов, обладающую следующими свойствами.
     Если

  Действительные числа образуют совокупность элементов, обладающую следующими свойствами.     Если a и b

a и b - действительные числа (алгебраические, рациональные, целые,

положительные целые), то таковыми же являются и
a + b и ab (замкнутость),     (1)
a + b = b + a, ab = ba (коммутативность),     (2)
a + (b + c) = (a + b) + c = a + b + c, a(bc) = (ab)c = abc (ассоциативность),     (3)
a * 1 = a (единица),     (4)
a(b + c) = ab + ac (дистрибутивность),     (5)
;из a + c = b + c следует a = b, из ca = cb, , следует a = b (сокращение).     (6)
     Действительное число 0 (нуль) обладает свойствами a + 0 = a, a * 0 = 0 для каждого действительного числа a.
     (Единственное) противоположное число -a и (единственное) обратное число a -1 = 1/a для действительного числа a определяются соответственно так:
.


Слайд 4 a + (-a) = a - a =

m, если n = m + x, где x - некоторое натуральное число) и полной упорядоченности (каждое непустое множество натуральных чисел имеет наименьший элемент). Множество натуральных чисел, содержащее число 1 и для каждого из своих элементов n следующий за ним элемент n + 1, содержит все натуральные числа (принцип полной индукции).     Свойства натуральных чисел могут быть выведены из пяти аксиом Пеано: 1) 1 есть натуральное число; 2) для каждого натурального числа N существует единственное следующее за ним натуральное число S(n); 3) ; 4) из S(n) = S(m) следует n = m и 5) имеет место принцип полной индукции. (При его формулировке элемент, следующий за n, обозначается через S(n).) Сложение и умножение, подчиняющиеся правилам (1)-(6), определяются "рекуррентными" соотношениямиn + 1 = S(n), n + S(m) = S(n + m), n*1 = n, n*S(m) = n*m + n.     Целыми числами называются числа вида n, -n и 0, где n - натуральное число, а рациональными - числа вида p/q, где p и q - целые числа и .     Действительные числа можно ввести, исходя из множества рациональных чисел, с помощью предельного процесса. Действительные числа, не являющиеся рациональными, называются иррациональными">a + (-a) = a - a = 0, aa -1

0, aa -1 = 1 ().
     Помимо "алгебраических" свойств, класс

положительных целых, или натуральных, чисел 1, 2, ... обладает свойством упорядоченности (n > m, если n = m + x, где x - некоторое натуральное число) и полной упорядоченности (каждое непустое множество натуральных чисел имеет наименьший элемент). Множество натуральных чисел, содержащее число 1 и для каждого из своих элементов n следующий за ним элемент n + 1, содержит все натуральные числа (принцип полной индукции).
     Свойства натуральных чисел могут быть выведены из пяти аксиом Пеано: 1) 1 есть натуральное число; 2) для каждого натурального числа N существует единственное следующее за ним натуральное число S(n); 3) ; 4) из S(n) = S(m) следует n = m и 5) имеет место принцип полной индукции. (При его формулировке элемент, следующий за n, обозначается через S(n).) Сложение и умножение, подчиняющиеся правилам (1)-(6), определяются "рекуррентными" соотношениями
n + 1 = S(n), n + S(m) = S(n + m), n*1 = n, n*S(m) = n*m + n.
     Целыми числами называются числа вида n, -n и 0, где n - натуральное число, а рациональными - числа вида p/q, где p и q - целые числа и .
     Действительные числа можно ввести, исходя из множества рациональных чисел, с помощью предельного процесса. Действительные числа, не являющиеся рациональными, называются иррациональными

Слайд 5 Действительными алгебраическими числами называются действительные корни алгебраических уравнений

Действительными алгебраическими числами называются действительные корни алгебраических уравнений с целочисленными коэффициентами,

с целочисленными коэффициентами, а действительными трансцендентными числами - остальные

действительные числа.
     Класс всех рациональных чисел содержит корни всех линейных уравнений с рациональными коэффициентами и включает в себя все целые числа. Класс всех действительных алгебраических чисел содержит действительные корни всех алгебраических уравнений с алгебраическими коэффициентами и включает в себя все рациональные числа.
     Отношение равенства. Из a = b следует b = a (симметрия отношения равенства), a + c = b + c и ac = bc (вообще f(a) = f(b), если f(a) обозначает некоторую операцию, приводящую к единственному результату). Из a = b и b = c следует a = c (транзитивность отношения равенства). Из следует и .


Слайд 6      Отношение тождества. Вообще говоря, уравнение относительно какой-либо величины

x или нескольких величин x1, x2, ... будет удовлетворяться

только при некоторых специальных значениях x или специальных множествах значений x1, x2, ... Если хотят подчеркнуть тот факт, что какое-нибудь уравнение удовлетворяется при всех значениях x или x1, x2, ... в известных представляющих интерес пределах, то вместо символа = иногда пользуются символом тождества (пример: (x - 1)(x + 1) x2 - 1), а пределы изменения рассматриваемых переменных иногда указывают справа от уравнения. Символ a b употребляется также в смысле: "a по определению равно b".
     Неравенства. Действительное число a может быть положительно (a > 0), отрицательно (a < 0) или равно нулю (a = 0). Сумма и произведение положительных чисел положительны.
     Действительное число a больше действительного числа b (a > b, b < a), если a = b + x, где x - некоторое действительное положительное число. Из a > b следует a + c > b + c, ac > bc, если c > 0, и ac < bc, если c < 0 (в частности, -a < -b), 1/a < 1/b, если ab > 0 и 1/a > 1/b, если ab < 0.
     Из и следует . Из и следует .
     Абсолютные величины. Абсолютная величина |a| действительного числа a по определению есть число, равное a, если , и равное -a, если a < 0. Отметим:
 =


  • Имя файла: deystvitelnye-chisla-i-ih-svoystva.pptx
  • Количество просмотров: 119
  • Количество скачиваний: 0