Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Содержание лекции

Содержание

Содержание лекции
Алгебра и геометрияГлава 1. Матрицы. Действия над матрицамиОдияко Наталья Николаевна,доцент кафедры математики и моделированияАуд.1602, тел. 240-40-65Natalya.Odiyako@vvsu.ru Содержание лекции Ключевые понятия Основные понятия и определенияМатрицей называется таблица, состоящая из n строк и m столбцов.Таблица имеет вид: Обозначение матрицыМатрицы обозначаются заглавными латинскими буквами (A, B, A1, B1) или А={аij}n×m.Матрица, Действия над матрицамиДве матрицы одинаковой размерности называются равными, если равны элементы, стоящие на одинаковых местах. Суммой 2-х матриц одинаковой размерности называется матрица, элементы которой находят по правилу:	А={аij}n×m, Для того чтобы матрицу умножить на число, надо каждый элемент матрицы умножить на это число:	А={аij}n×m; α-число	α∙А={аij}n×m Если А={аij}n×m, B={bij}n×m, то разностью матриц А и В называется матрица C={cij}n×m, где cij=aij-bij. Введём операцию умножения матрицы таким образом, чтобы выполнялось условие:	Аn×p∙Вp×m=Сn×m. Свойства операций над матрицамиА+В=В+АА∙В≠В∙Аα∙(А+В)= αА+ αВА(В+С)=А∙В+А∙С (строго!) 5) Если в матрице А строки заменить местами, то получим так называемую 6) Для квадратных матриц вычисляют определители матриц, которые обозначаются символами ΔА; |A|; Обратная матрицаМатрица А-1 называется обратной матрице А, если А-1∙А=А∙А-1=Е.Вывод 1: обратная матрица существует для квадратной матрицы. Квадратная матрица, у которой определитель отличен от 0, т.е. |А|≠0, называется невырожденной. Теорема о единственности обратной матрицы.	Если матрица имеет обратную, то единственную. Теорема о существовании обратной матрицы.	Чтобы матрица имела обратную, необходимо и достаточно, чтобы Алгоритм построения обратной матрицы1) Убеждаемся, что матрица квадратная (для прямоугольных матриц нет 3) Если определитель не равен 0, то вычисляем алгебраические дополнения элементов матрицы.4) Линейная зависимость и линейная независимость столбцов и строк Столбцы называются линейно-независимыми, когда линейная комбинация равна 0 при всех α=0.Столбцы называются Теорема.	Столбцы линейно-зависимы, когда хотя бы один столбец является линейной комбинацией остальных.Теорема.	Столбцы матрицы Ранг матрицыДана матрица размером n×m.Минором порядка r (Mr) называется определитель, составленный из Минор порядка r называется базисным, если он отличен от 0, и миноры Нахождение ранга матрицы через миноры трудоёмкая операция. Существует алгоритм, позволяющий достаточно легко Теорема.	Ранг матрицы равен максимальному числу линейно-зависимых столбцов матрицы.	Максимальное число линейно-независимых строк равно максимальному числу линейно-независимых столбцов. Теорема.	Линейные преобразования столбцов или строк матрицы не меняют ранг матрицы.	К линейным преобразованиям строк относятся следующие преобразования: перестановка строк местами;прибавление к одной строке другой строки, умноженной на некоторое число;умножение Теорема.	Ранг матрицы равен числу ненулевых строк (столбцов), полученных в результате применения элементарных Применим к матрице элементарные преобразования.	Подчеркнём элементы, имеющие одинаковые индексы.	Ниже или выше этих Вопросы и задания для самопроверки Рекомендуемая литература Использование материалов презентацииИспользование данной презентации, может осуществляться только при условии соблюдения требований
Слайды презентации

Слайд 2 Содержание лекции

Содержание лекции

Слайд 3 Ключевые понятия

Ключевые понятия

Слайд 4 Основные понятия и определения
Матрицей называется таблица, состоящая из

Основные понятия и определенияМатрицей называется таблица, состоящая из n строк и m столбцов.Таблица имеет вид:

n строк и m столбцов.
Таблица имеет вид:




Слайд 6 Обозначение матрицы
Матрицы обозначаются заглавными латинскими буквами (A, B,

Обозначение матрицыМатрицы обозначаются заглавными латинскими буквами (A, B, A1, B1) или

A1, B1) или А={аij}n×m.

Матрица, у которой все элементы внутри

равны 0, называется нулевой матрицей и обозначается «O».

Слайд 9 Действия над матрицами
Две матрицы одинаковой размерности называются равными,

Действия над матрицамиДве матрицы одинаковой размерности называются равными, если равны элементы, стоящие на одинаковых местах.

если равны элементы, стоящие на одинаковых местах.


Слайд 10 Суммой 2-х матриц одинаковой размерности называется матрица, элементы

Суммой 2-х матриц одинаковой размерности называется матрица, элементы которой находят по

которой находят по правилу:
А={аij}n×m, B={bij}n×m
A+B=C={cij}n×m.

cij=aij+bij - складываются элементы, стоящие

на одинаковых местах.

Слайд 12 Для того чтобы матрицу умножить на число, надо

Для того чтобы матрицу умножить на число, надо каждый элемент матрицы умножить на это число:	А={аij}n×m; α-число	α∙А={аij}n×m

каждый элемент матрицы умножить на это число:

А={аij}n×m; α-число
α∙А={аij}n×m


Слайд 13 Если А={аij}n×m, B={bij}n×m, то разностью матриц А и

Если А={аij}n×m, B={bij}n×m, то разностью матриц А и В называется матрица C={cij}n×m, где cij=aij-bij.

В называется матрица C={cij}n×m, где cij=aij-bij.


Слайд 14
Введём операцию умножения матрицы таким образом, чтобы выполнялось

Введём операцию умножения матрицы таким образом, чтобы выполнялось условие:	Аn×p∙Вp×m=Сn×m.

условие:
Аn×p∙Вp×m=Сn×m.


Слайд 16 Свойства операций над матрицами
А+В=В+А

А∙В≠В∙А

α∙(А+В)= αА+ αВ

А(В+С)=А∙В+А∙С (строго!)

Свойства операций над матрицамиА+В=В+АА∙В≠В∙Аα∙(А+В)= αА+ αВА(В+С)=А∙В+А∙С (строго!)

Слайд 17 5) Если в матрице А строки заменить местами,

5) Если в матрице А строки заменить местами, то получим так

то получим так называемую транспонированную матрицу.
Если А – матрица,

то АТ – транспонированная матрица, тогда (АТ)Т=А; (А∙В)Т=ВТ∙АТ

Слайд 18 6) Для квадратных матриц вычисляют определители матриц, которые

6) Для квадратных матриц вычисляют определители матриц, которые обозначаются символами ΔА;

обозначаются символами ΔА; |A|; ||A||; detA (детерминант), являющиеся числом.
det(A∙B)=detA∙detB
Замечание!

Все операции определены.


Слайд 19 Обратная матрица
Матрица А-1 называется обратной матрице А, если

Обратная матрицаМатрица А-1 называется обратной матрице А, если А-1∙А=А∙А-1=Е.Вывод 1: обратная матрица существует для квадратной матрицы.

А-1∙А=А∙А-1=Е.
Вывод 1: обратная матрица существует для квадратной матрицы.


Слайд 21 Квадратная матрица, у которой определитель отличен от 0,

Квадратная матрица, у которой определитель отличен от 0, т.е. |А|≠0, называется

т.е. |А|≠0, называется невырожденной. В противном случае называется вырожденной.


Слайд 22 Теорема о единственности обратной матрицы.

Если матрица имеет обратную,

Теорема о единственности обратной матрицы.	Если матрица имеет обратную, то единственную.

то единственную.


Слайд 23 Теорема о существовании обратной матрицы.
Чтобы матрица имела обратную,

Теорема о существовании обратной матрицы.	Чтобы матрица имела обратную, необходимо и достаточно,

необходимо и достаточно, чтобы она была квадратной и невырожденной.
Необходимость

доказательства следует из выводов. Доказательство достаточности представляет собой процесс представления матрицы, которая, по определению, и будет обратной.


Слайд 24 Алгоритм построения обратной матрицы
1) Убеждаемся, что матрица квадратная

Алгоритм построения обратной матрицы1) Убеждаемся, что матрица квадратная (для прямоугольных матриц

(для прямоугольных матриц нет обратных).
2) Вычисляем определитель квадратной матрицы.

Если определитель равен 0, то делаем вывод, что у матрицы нет обратной.

Слайд 25 3) Если определитель не равен 0, то вычисляем

3) Если определитель не равен 0, то вычисляем алгебраические дополнения элементов

алгебраические дополнения элементов матрицы.
4) Из алгебраических дополнений составляем так

называемую присоединённую матрицу (Ã={Aij}n×n).
5) Транспонируем присоединённую матрицу.

Слайд 27 Линейная зависимость и линейная независимость столбцов и строк

Линейная зависимость и линейная независимость столбцов и строк

Слайд 28 Столбцы называются линейно-независимыми, когда линейная комбинация равна 0

Столбцы называются линейно-независимыми, когда линейная комбинация равна 0 при всех α=0.Столбцы

при всех α=0.
Столбцы называются линейно-зависимыми, если линейная комбинация равна

0 не при всех α=0.

Слайд 29 Теорема.
Столбцы линейно-зависимы, когда хотя бы один столбец является

Теорема.	Столбцы линейно-зависимы, когда хотя бы один столбец является линейной комбинацией остальных.Теорема.	Столбцы

линейной комбинацией остальных.

Теорема.
Столбцы матрицы можно представить в виде линейной

комбинации столбцов матрицы Е.

Слайд 30 Ранг матрицы
Дана матрица размером n×m.
Минором порядка r (Mr)

Ранг матрицыДана матрица размером n×m.Минором порядка r (Mr) называется определитель, составленный

называется определитель, составленный из элементов, стоящих на пересечении любых

r строк и любых r столбцов матрицы.
r≤min{n;m}

Слайд 33 Минор порядка r называется базисным, если он отличен

Минор порядка r называется базисным, если он отличен от 0, и

от 0, и миноры более высоких порядков равны 0

или не существуют.
Порядок базисного минора называется рангом матрицы (число r).

Слайд 34 Нахождение ранга матрицы через миноры трудоёмкая операция. Существует

Нахождение ранга матрицы через миноры трудоёмкая операция. Существует алгоритм, позволяющий достаточно

алгоритм, позволяющий достаточно легко найти ранг и базисный минор.


Слайд 35 Теорема.
Ранг матрицы равен максимальному числу линейно-зависимых столбцов матрицы.
Максимальное

Теорема.	Ранг матрицы равен максимальному числу линейно-зависимых столбцов матрицы.	Максимальное число линейно-независимых строк равно максимальному числу линейно-независимых столбцов.

число линейно-независимых строк равно максимальному числу линейно-независимых столбцов.


Слайд 36 Теорема.
Линейные преобразования столбцов или строк матрицы не меняют

Теорема.	Линейные преобразования столбцов или строк матрицы не меняют ранг матрицы.	К линейным преобразованиям строк относятся следующие преобразования:

ранг матрицы.
К линейным преобразованиям строк относятся следующие преобразования:


Слайд 37 перестановка строк местами;
прибавление к одной строке другой строки,

перестановка строк местами;прибавление к одной строке другой строки, умноженной на некоторое

умноженной на некоторое число;
умножение строки на некоторое число;
те же

действия со столбцами.

Слайд 38 Теорема.
Ранг матрицы равен числу ненулевых строк (столбцов), полученных

Теорема.	Ранг матрицы равен числу ненулевых строк (столбцов), полученных в результате применения

в результате применения элементарных преобразований, которые позволяют выделить строки

и столбцы, являющиеся линейными комбинациями других строк (столбцов), т.е. выделить базисный минор.

Слайд 40 Применим к матрице элементарные преобразования.
Подчеркнём элементы, имеющие одинаковые

Применим к матрице элементарные преобразования.	Подчеркнём элементы, имеющие одинаковые индексы.	Ниже или выше

индексы.
Ниже или выше этих элементов будем получать 0, если

понадобится, устраним линейно-зависимые строки.



Слайд 42 Вопросы и задания для самопроверки

Вопросы и задания для самопроверки

Слайд 43 Рекомендуемая литература

Рекомендуемая литература

  • Имя файла: soderzhanie-lektsii.pptx
  • Количество просмотров: 90
  • Количество скачиваний: 0