Слайд 2
История создания электромобиля.
Электромобиль появился раньше, чем двигатель внутреннего
сгорания. Первый электромобиль в виде тележки с электромотором был создан в 1841
году.
В 1899 году в Санкт-Петербурге русский дворянин и инженер-изобретатель Ипполит Романов создал первый русский электромобиль. Его общая компоновка была заимствована у английских кэбов, где извозчик располагался на высоких ко́злах позади пассажиров. Экипаж был двухместным и четырёхколёсным, передние колёса по диаметру были больше задних. На первом электромобиле использовался свинцовый аккумулятор системы Бари, имевший 36 банок (вольтовых столбов). Он требовал подзарядки каждые 60 вёрст (~64 километра). Суммарная мощность автомобиля составляла 4 лошадиные силы. Разработка экипажа была заимствована у моделей американской фирмы «Моррис-Салом», которая выпускала автомобили с 1898 года. Электромобиль изменял скорость движения в девяти градациях от 1,6 до 37,4 км/час.
Электромобиль La Jamais Contente 29 апреля либо 1 мая 1899 года установил рекорд скорости на суше. Он первым в мире преодолел скорость 100 км/ч и достиг скорости 105,882 км/ч. Известный американский конструктор электромобилей Уолтер Бейкер получил скорость 130 км/ч. А электромобиль фирмы «Борланд Электрик» проехал от Чикаго до Милуоки (167 км) на одной зарядке. На следующий день (после перезарядки) электромобиль вернулся в Чикаго своим ходом. Средняя скорость составила 55 км/ч.
Слайд 3
Первая половина ХIX века.
Изначально запас хода и скорость
у электрических и бензиновых экипажей были примерно одинаковыми. Главным
минусом электромобилей была сложная система подзарядки. Поскольку тогда ещё не существовало усовершенствованных преобразователей переменного тока в постоянный, зарядка осуществлялась крайне сложным способом. Для подзарядки использовался электромотор, работавший от переменного тока. Он вращал вал генератора, к которому были подсоединены батареи электромобиля. В 1906 году был изобретён сравнительно простой в эксплуатации выпрямитель тока, но это существенно проблему подзарядки не решило.
В первой четверти XX века широкое распространение получили электромобили и автомобили с паровой машиной. В 1900 году примерно половина автомобилей в США была на паровом ходу, в 1910-х в Нью-Йорке в такси работало до 70 тысяч электромобилей. Значительное распространение в начале века получили и грузовые электромобили, а также электрическиеомнибусы (электробусы).
Слайд 4
Вторая половина ХХ века.
В начале 90-х годов штат Калифорния был одним из
самых загазованных регионов США. Поэтому Калифорнийским Комитетом Воздушных Ресурсов (CARB)
было принято решение — в 1998 году 2 % продаваемых в Калифорнии автомобилей не должны производить выхлопов, а к2003 году — 10 %. Компания General Motors отреагировала одной из первых и с 1996 года начала серийный выпуск модели EV1 с электрическим приводом. Некоторые автопроизводители также начали продажи электромобилей в Калифорнии. Основной массой пользователей EV1 стала голливудская богемная публика. Всего с 1997 года в Калифорнии было продано около 5500 электромобилей разных производителей.
Выпускался с 1997 года, второе поколение — с 1999. Был доступен только в Калифорнии и Аризоне и только на условиях лизинга.
Слайд 5
ХХI век.
22-23 мая 2010 года переделанная в электромобиль Daihatsu
Mira EV, творение Японского клуба электромобилей, проехала 1003,184 километра на
одном заряде аккумулятора
24 августа 2010 года электромобиль «Venturi Jamais Contente» с литий-ионными аккумуляторами, на солёном озере в штате Юта, установил рекорд скорости 495 км/ч на дистанции в 1 км. Во время заезда автомобиль развивал максимальную скорость 515 км/ч
Слайд 6
27 октября 2010 года электромобиль «lekker Mobil» конвертированный
из микровэна Audi A2 совершил рекордный пробег на одной зарядке из Мюнхена в Берлин длиной
605 км в условиях реального движения по дорогам общего пользования, при этом были сохранены и действовали все вспомогательные системы, включая отопление
29 ноября 2010 года победителем конкурса Европейский автомобиль года впервые объявлен электромобиль модели Nissan Leaf, получивший 257 очков
Слайд 7
В октябре 2011 года в России начал продаваться
первый электромобиль — Mitsubishi i- MiEV. За первые три месяца был
продан 41 электромобиль. Министерство энергетики США назвало i-MiEV самым экономичным. Mitsubishi i-MiEV получил «Экологический знак качества» общероссийской общественной экологической организации «Зеленый патруль».
Слайд 8
Преимущества Электромобиля.
Отсутствие вредных выхлопов в месте нахождения автомобиля.
Более
высокая экологичность ввиду отсутствия необходимости применения нефтяного топлива, антифризов,
моторных масел, а также фильтров для этих жидкостей.
Простота техобслуживания, большой межсервисный пробег, дешевизна ТО и ТР.
Низкая пожаро- и взрывоопасность при аварии.
Простота конструкции (простота электродвигателя и трансмиссии; отсутствие необходимости в переключении передач ввиду высокой приспособляемости крутящего момента ТЭД к изменениям внешней нагрузки, низкой устойчивой частоты вращения вала электродвигателя, возможности его реверсирования) и управления, высокая надёжность и долговечность экипажной части (до 20—25 лет) в сравнении с обычным автомобилем.
ДВС является источником возникновения динамических нагрузок и крутильных колебаний в трансмиссии автомобиля и источником вибраций, передающихся несущей конструкцииавтомобиля, на электромобиле ТЭД динамически уравновешен.
Возможность подзарядки от бытовой электрической сети (розетки), но такой способ в 5—10 раз дольше, чем от специального высоковольтного зарядного устройства.
Автомобиль с электроприводом — единственный вариант применения на легковом автотранспорте дешевой (по сравнению с нефтяным или водородным топливом) энергии, вырабатываемой АЭС, ГЭС и т. п.
Массовое применение электромобилей смогло бы помочь в решении проблемы «энергетического пика» за счёт подзарядки аккумуляторов в ночное время.
ТЭД имеют КПД до 90-95 % по сравнению с 22-42 % у ДВС
Меньший шум за счёт меньшего количества движимых частей и механических передач.
Высокая плавность хода с широким интервалом изменения частоты вращения вала двигателя.
Возможность подзарядки аккумуляторов во время рекуперативного торможения.
Возможность торможения самим электродвигателем (режим электромагнитного тормоза) без использования механических тормозов — отсутствие трения и соответственно износа тормозов.
Простая возможность реализации полного привода и торможения путем применения схемы «мотор-колесо», что позволяет, помимо прочего, легко реализовать систему поворота всех четырех колес, вплоть до положения перпендикулярного кузову электромобиля.
Слайд 9
Недостатки электромобиля.
Аккумуляторы за полтора века эволюции так и не
достигли характеристик, позволяющих электромобилю на равных конкурировать с автомобилем
по запасу хода и стоимости, несмотря на значительное усовершенствование конструкции. Имеющиеся высокоэнергоёмкие аккумуляторы либо слишком дороги из-за применения драгоценных или дорогостоящих металлов (серебро, литий), либо работают при слишком высоких температурах (рабочая температура натрий-серного аккумулятора — более 300 °С). Кроме того, такие аккумуляторы отличаются высоким саморазрядом. Одним из перспективных направлений стала разработка никель-металл-гидридных аккумуляторов с оптимальным соотношением энергоёмкости и себестоимости, однако из-за патентных ограничений на NiMH-аккумуляторы[11] на электромобилях вынуждены применять свинцово-кислотные АКБ. Впрочем, энергоёмкость таких АКБ увеличилась за XX век в 4 раза (до 40—45 Вт·ч/кг) и они не требуют обслуживания в течение всего срока службы. Значительно повысить отдачу от аккумуляторов позволило применение электронных систем оперативного контроля за состоянием и зарядкой-разрядкой АКБ. Возможно выходом из этой ситуации будет применение топливных элементов, в частности дешевеющих PEM-элементов.
Аккумуляторы хорошо работают при движении электромобиля на постоянных скоростях и при плавных разгонах. При резких стартах тяговые АКБ теряют много энергии. Для увеличения пробега электромобиля необходимы специальные стартовые системы, например, на конденсаторах, а также применение системрекуперации энергии (экономия до 25 %).
Проблемой является производство и утилизация аккумуляторов, которые часто содержат ядовитые компоненты (например, свинец или литий) и кислоты.
Часть энергии аккумуляторов тратится на охлаждение или обогрев салона автомобиля, а также питание прочих бортовых энергопотребителей (например, свет или воздушный компрессор). Предпринимаются усилия, чтобы решить эту проблему с использованием топливных элементов, ионисторов и фотоэлементов.
Для массового применения электромобилей требуется создание соответствующей инфраструктуры для подзарядки аккумуляторов («автозарядные» станции).
При массовом использовании электромобилей в момент их зарядки от бытовой сети возрастают перегрузки электрических сетей «последней мили», что чревато снижением качества энергоснабжения и риском локальных аварий сети.
Длительное время зарядки аккумуляторов по сравнению с заправкой топливом.
Малый пробег от одного заряда. Литиевая батарея ёмкостью 24 кВт·ч при средних условиях движения (60-90 км/ч, ближний свет фар (фары на светодиодах), без отопления салона, без кондиционера) позволяет электромобилю проехать около 160 км. Использование кондиционера, отопителя салона, движение с частым разгоном/торможением, движение со скоростью более 90-100 км/ч, загрузка электромобиля пассажирами или грузом уменьшают пробег от одного заряда до 2-х раз (до 80 км).
Высокая стоимость литиевых батарей, или высокий вес достаточно ёмких свинцовых батарей. Литиевая батарея ёмкостью 24 кВт·ч стоит порядка 6000-9000 $ (даёт около 160 км пробега). Свинцовые батареи весом порядка 400 кг позволяют иметь пробег всего около 80 км, к тому же свинцовые батареи очень не любят глубокого разряда. Использование большего количества свинцовых батарей приводит к перегрузке электромобиля, а использование литиевых батарей большей ёмкости сильно удорожает электромобиль. Другие типы батарей в электромобилях практически не используются.
Ухудшение характеристик (ёмкости, при заряде и при расходе энергии) батарей на холоде.
Деградация литиевых и других батарей с возрастом. В лучших моделях литиевых батарей через 5-8 лет остается менее 80 % емкости.
Мощность вырабатываемая всеми современными электростанциями значительно меньше, чем мощность всех современных автомобилей. Вырабатываемой энергии не хватит на одновременную зарядку очень большого количества электромобилей.