Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему по геометрии. 11 класс. Конус.

Содержание

История изучения геометрического тела конус. С именем Евклида связывают становление александрийской математики (геометрической алгебры) как науки. В XI книге «Начал» дается следующее определение: если вращающийся около одного из своих катетов прямоугольный треугольник слева вернется в то
История конусаПонятие конусаПлощадь поверхности конусаУсеченный конусПримеры конусов из жизниКонус.Автор презентации:Юдина Наталья Вячеславовна История изучения геометрического тела конус. С именем Евклида связывают становление александрийской математики История изучения геометрического тела конус.Аполлоний Пергский- древнегреческий математик и астроном, ученик Евклида История изучения геометрического тела конус.Строгое доказательство теорем, служащих для вывода формулы  объема История изучения геометрического тела конус.Архимед древнегреческий ученый, математик и механик, основоположник теоретической Понятие конуса.Конус- это тело, ограниченное конической поверхностью и кругом с границей L.Поверхность, Понятие конуса.Коническая поверхность называется боковой поверхностью конуса, а круг –основанием конуса.Точка Р Понятие конуса.Конус получен вращением прямоугольного треугольника АВС вокруг катета АВ. Понятие конуса.Осевое сечение конуса.Если секущая плоскостьпроходит через ось конуса, тосечение представляет собойравнобедренный Площадь поверхности конуса.За площадь боковой поверхности конуса принимается площадь ее развертки.Площадь боковой Усеченный конус.Одна из частей представляет собой конус, а другая называется усеченным конусом.Основание Усеченный конус.Часть конической поверхности, ограничивающая усеченный конус, называется его боковой поверхностью, а Усеченный конус.Усечённый конус получен вращением прямоугольной трапеции АВСD вокруг стороны CD. Усеченный конус.Площадь боковой поверхности усеченного конуса равны произведению полусуммы длин окружностей оснований Примеры конусов из жизни.Всех с наступающим Новым годом! Спасибо за просмотр презентации!
Слайды презентации

Слайд 2 История изучения геометрического тела конус.
С именем Евклида связывают

История изучения геометрического тела конус. С именем Евклида связывают становление александрийской

становление александрийской математики (геометрической алгебры) как науки.
В XI книге

«Начал» дается следующее определение: если вращающийся около одного из своих катетов прямоугольный треугольник слева вернется в то же самое положение, из которого он начал двигаться, то описанная фигура будет конусом.

Евклид рассматривает  только прямые конусы, т.е. такие, у которых ось перпендикулярна к основанию.

ЕВКЛИД
(330-275гг. до н.э.)


Слайд 3 История изучения геометрического тела конус.
Аполлоний Пергский- древнегреческий математик

История изучения геометрического тела конус.Аполлоний Пергский- древнегреческий математик и астроном, ученик

и астроном, ученик Евклида дал полное изложение теории и

основанных им трудов «Конические сечения» в восьми книгах.

У Евклида нет понятия конической поверхности, оно было введено Аполлонием в его “Конических сечениях”, при этом он имел в виду обе плоскости конуса.


АПОЛЛОНИЙ ПЕРГСКИЙ

(260-170гг.до н. э.)


Слайд 4 История изучения геометрического тела конус.
Строгое доказательство теорем, служащих

История изучения геометрического тела конус.Строгое доказательство теорем, служащих для вывода формулы 

для вывода формулы  объема конуса и изложенных в пяти

предложениях 12 книги “Начал” Евклида, дал Евдокс Книдский.

ЕВДОКС КНИДСКИЙ
(408 - З55 гг.до.н.э )


Слайд 5 История изучения геометрического тела конус.
Архимед древнегреческий ученый, математик

История изучения геометрического тела конус.Архимед древнегреческий ученый, математик и механик, основоположник

и механик, основоположник теоретической механики и гидростатики.

В «Началах»

Евклида мы находим определение только объёмов цилиндра и конуса, площадь же боковых поверхностей была найдена Архимедом.

До нас дошло тринадцать трактатов Архимеда. В самом знаменитом из них — «О шаре и цилиндре» он доказал следующую теорему: «Поверхность всякого равнобедренного (т.е. прямого кругового) конуса, за вычетом основания, равна кругу, радиус которого есть средняя пропорциональная между стороной (т.е. образующей) конуса и радиуса круга, являющегося основанием конуса». 

АРХИМЕД (около 287 до н.э., Сиракузы,  Сицилия — 212 до н.э)


Слайд 6 Понятие конуса.

Конус- это тело, ограниченное конической поверхностью и

Понятие конуса.Конус- это тело, ограниченное конической поверхностью и кругом с границей

кругом с границей L.
Поверхность, образованная отрезками , проведенными к

окружности, называется конической поверхностью, а сами отрезки- образующими конической поверхности.



Слайд 7 Понятие конуса.
Коническая поверхность называется боковой поверхностью конуса, а

Понятие конуса.Коническая поверхность называется боковой поверхностью конуса, а круг –основанием конуса.Точка

круг –основанием конуса.
Точка Р называется вершиной конуса, а образующие

конической поверхности- образующими конуса.
Прямая ОР , проходящая через центр основания и вершину , называется осью конуса.
Отрезок ОР – высота конуса.

Слайд 8 Понятие конуса.
Конус получен вращением прямоугольного треугольника АВС вокруг

Понятие конуса.Конус получен вращением прямоугольного треугольника АВС вокруг катета АВ.

катета АВ.


Слайд 9 Понятие конуса.

Осевое сечение конуса.

Если секущая плоскость
проходит через ось

Понятие конуса.Осевое сечение конуса.Если секущая плоскостьпроходит через ось конуса, тосечение представляет

конуса, то
сечение представляет собой
равнобедренный треугольник,
основание которого- диаметр
основания конуса, а

боковые
стороны- образующие
конуса. Это сечение- осевое.


Слайд 10 Площадь поверхности конуса.
За площадь боковой поверхности конуса принимается

Площадь поверхности конуса.За площадь боковой поверхности конуса принимается площадь ее развертки.Площадь

площадь ее развертки.
Площадь боковой поверхности конуса равна произведению половины

длины окружности основания на образующую.


Площадь полной поверхности конуса- сумма площадей боковой поверхности и основания.

Sбок. = П r l

Sкон.= П r (l+r)


Слайд 11 Усеченный конус.
Одна из частей представляет собой конус, а

Усеченный конус.Одна из частей представляет собой конус, а другая называется усеченным

другая называется усеченным конусом.
Основание исходного конуса и круг ,

полученный в сечении этого конуса плоскостью, называются основаниями усеченного конуса , а отрезок , соединяющий их центры ,-высотой усеченного конуса.

Слайд 12 Усеченный конус.
Часть конической поверхности, ограничивающая усеченный конус, называется

Усеченный конус.Часть конической поверхности, ограничивающая усеченный конус, называется его боковой поверхностью,

его боковой поверхностью, а отрезки образующих конической поверхности ,

заключенные между основаниями, называются образующими усеченного конуса.

Слайд 13 Усеченный конус.
Усечённый конус получен вращением прямоугольной трапеции АВСD

Усеченный конус.Усечённый конус получен вращением прямоугольной трапеции АВСD вокруг стороны CD.

вокруг стороны CD.


Слайд 14 Усеченный конус.
Площадь боковой поверхности усеченного конуса равны произведению

Усеченный конус.Площадь боковой поверхности усеченного конуса равны произведению полусуммы длин окружностей

полусуммы длин окружностей оснований на образующую.

S = π (r

+ r1) l

Слайд 15 Примеры конусов из жизни.
Всех с наступающим Новым годом!

Примеры конусов из жизни.Всех с наступающим Новым годом!

  • Имя файла: prezentatsiya-po-geometrii-11-klass-konus.pptx
  • Количество просмотров: 170
  • Количество скачиваний: 0