Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Полуправильные и звездчатые многогранники. Кристаллы

Содержание

Полуправильные многогранникиАрхимедовы тела Архимедовы тела — выпуклые многогранники, обладающие двумя свойствами:Все грани являются правильными многоугольниками двух или более типов (если все грани — правильные многоугольники одного типа, это — правильный многогранник);Для любой пары вершин
Полуправильные и звездчатые многогранники. Кристаллы.Бурак Анастасия 10 В Полуправильные многогранникиАрхимедовы тела   Архимедовы тела — выпуклые многогранники, обладающие двумя Полуправильные многогранникиКаталановы тела Двойственные архимедовым телам, так называемые Каталановы тела, имеют конгруэнтные Полуправильные многогранники Существует 13 архимедовых тел, два из которых (курносый куб и Полуправильные многогранникиУсечённый октаэдрУсечённый икосаэдрУсечённый кубУсечённый додекаэдрРомбокубооктаэдрРомбоикосододекаэдр Полуправильные многогранникиРомбоусечённый кубооктаэдрРомбоусечённый икосододекаэдрКурносый кубКурносый додекаэдр Звездчатые многогранникиЗвёздчатый многогранник (звёздчатое тело) — это невыпуклый многогранник, грани которого пересекаются Звездчатые многогранникиДодекаэдр имеет 3 звёздчатые формы: малый звёздчатый додекаэдр, большой додекаэдр, большой звёздчатый додекаэдр Звездчатые многогранникиИкосаэдр имеет 59 звёздчатых форм Звездчатые многогранникиКубооктаэдр имеет 4 звёздчатые формы Звездчатые многогранникиИкосододекаэдр имеет множество звёздчатых форм, первая из которых есть соединение икосаэдра и додекаэдра КристаллыКристаллы — это твёрдые вещества, имеющие естественную внешнюю форму правильных симметричных многогранников, Кристаллы  Виды кристаллов Следует разделить идеальный и реальный кристалл.Идеальный кристаллЯвляется, по Кристаллы
Слайды презентации

Слайд 2 Полуправильные многогранники
Архимедовы тела

Архимедовы тела —

Полуправильные многогранникиАрхимедовы тела  Архимедовы тела — выпуклые многогранники, обладающие двумя

выпуклые многогранники, обладающие двумя свойствами:
Все грани являются правильными многоугольниками

двух или более типов (если все грани — правильные многоугольники одного типа, это — правильный многогранник);
Для любой пары вершин существует симметрия многогранника (то есть движение переводящее многогранник в себя) переводящая одну вершину в другую. В частности, все многогранные углы при вершинах конгруэнтны.

Слайд 3 Полуправильные многогранники
Каталановы тела

Двойственные архимедовым телам, так называемые

Полуправильные многогранникиКаталановы тела Двойственные архимедовым телам, так называемые Каталановы тела, имеют

Каталановы тела, имеют конгруэнтные грани, равные двугранные углы и

правильные многогранные углы. Каталановы тела тоже иногда называют полуправильными многогранниками. В этом случае полуправильными многогранниками считается совокупность архимедовых и каталановых тел. Архимедовы тела являются полуправильными многогранниками в том смысле, что их грани — правильные многоугольники, но они не одинаковы, а каталановы — в том смысле, что их грани одинаковы, но не являются правильными многоугольниками; при этом для тех и других сохраняется условие одного из типов пространственной симметрии: тетраэдрического, октаэдрического или икосаэдрического.
То есть, полуправильными в этом случае называются тела, у которых отсутствует только одно из первых двух из следующих свойств правильных тел:
Все грани являются правильными многоугольниками;
Все грани одинаковы;
Тело относится к одному из трёх существующих типов пространственной симметрии.

Слайд 4 Полуправильные многогранники
Существует 13 архимедовых тел, два из

Полуправильные многогранники Существует 13 архимедовых тел, два из которых (курносый куб

которых (курносый куб и курносый додекаэдр) не являются зеркально-симметричными

и имеют левую и правую формы.

Кубооктаэдр

Икосододекаэдр

Усечённый тетраэдр


Слайд 5 Полуправильные многогранники
Усечённый октаэдр
Усечённый икосаэдр
Усечённый куб
Усечённый додекаэдр
Ромбокубооктаэдр
Ромбоикосододекаэдр

Полуправильные многогранникиУсечённый октаэдрУсечённый икосаэдрУсечённый кубУсечённый додекаэдрРомбокубооктаэдрРомбоикосододекаэдр

Слайд 6 Полуправильные многогранники
Ромбоусечённый
кубооктаэдр
Ромбоусечённый
икосододекаэдр
Курносый куб
Курносый додекаэдр

Полуправильные многогранникиРомбоусечённый кубооктаэдрРомбоусечённый икосододекаэдрКурносый кубКурносый додекаэдр

Слайд 7 Звездчатые многогранники
Звёздчатый многогранник (звёздчатое тело) — это невыпуклый

Звездчатые многогранникиЗвёздчатый многогранник (звёздчатое тело) — это невыпуклый многогранник, грани которого

многогранник, грани которого пересекаются между собой. Как и у

незвёздчатых многогранников грани попарно соединяются в ребрах, при этом внутренние линии пересечения не считаются рёбрами.

Существует только одна звёздчатая форма октаэдра.

Слайд 8 Звездчатые многогранники
Додекаэдр имеет 3 звёздчатые формы: малый звёздчатый

Звездчатые многогранникиДодекаэдр имеет 3 звёздчатые формы: малый звёздчатый додекаэдр, большой додекаэдр, большой звёздчатый додекаэдр

додекаэдр, большой додекаэдр, большой звёздчатый додекаэдр


Слайд 9 Звездчатые многогранники
Икосаэдр имеет 59 звёздчатых форм

Звездчатые многогранникиИкосаэдр имеет 59 звёздчатых форм

Слайд 10 Звездчатые многогранники
Кубооктаэдр имеет 4 звёздчатые формы

Звездчатые многогранникиКубооктаэдр имеет 4 звёздчатые формы

Слайд 11 Звездчатые многогранники
Икосододекаэдр имеет множество звёздчатых форм, первая из

Звездчатые многогранникиИкосододекаэдр имеет множество звёздчатых форм, первая из которых есть соединение икосаэдра и додекаэдра

которых есть соединение икосаэдра и додекаэдра


Слайд 12 Кристаллы
Кристаллы — это твёрдые вещества, имеющие естественную внешнюю

КристаллыКристаллы — это твёрдые вещества, имеющие естественную внешнюю форму правильных симметричных

форму правильных симметричных многогранников, основанную на их внутренней структуре,

то есть на одном из нескольких определённых регулярных расположений составляющих вещество частиц (атомов, молекул, ионов).

Слайд 13 Кристаллы
Виды кристаллов
Следует разделить идеальный и

Кристаллы Виды кристаллов Следует разделить идеальный и реальный кристалл.Идеальный кристаллЯвляется, по

реальный кристалл.
Идеальный кристалл
Является, по сути, математическим объектом, имеющим полную,

свойственную ему симметрию, идеализированно ровные гладкие грани.
Реальный кристалл
Всегда содержит различные дефекты внутренней структуры решетки, искажения и неровности на гранях и имеет пониженную симметрию многогранника вследствие специфики условий роста, неоднородности питающей среды, повреждений и деформаций. Реальный кристалл не обязательно обладает кристаллографическими гранями и правильной формой, но у него сохраняется главное свойство — закономерное положение атомов в кристаллической решётке.

  • Имя файла: polupravilnye-i-zvezdchatye-mnogogranniki-kristally.pptx
  • Количество просмотров: 138
  • Количество скачиваний: 0