Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему по математике на тему Достижения арабских математиков IX-XIV веков

С такой же скоростью, с которой арабы и их фанатизм распространились по Западному и Восточному миру, они поднялись по лестнице образованности и быстро успели гораздо больше в интеллектуальной культуре, чем Западный мир. ГЕГЕЛЬ
Достижения арабских математиков  IX-XIV веков Выполнила: учитель математики МБОУ «СОШ №129 г.Челябинска», Колганова Регина Робертовна С такой же скоростью, с которой арабы и их фанатизм IX–XII вв. – расцвет науки в арабоязычных странах. Мухаммед аль-Хорезми (787-ок. 850 гг.)   В сочинении аль-Хорезми впервые в «Краткая книга восполнения и противостояния»  Первое – восполнение (аль-джебр) – состоит Абу Райхан аль-Бируни  (973–ок. 1050)изготовил один из первых научных глобусов, на тригонометрическим способом определил радиус Земли, получив примерно 6403 км (по современным Способ определять расстояния   Чтобы определить ширину оврага ВС, аль-Бируни предлагает Радиус Земли Угол «понижения горизонта» а он определил с помощью астролябии, а Омар Хайям  (ок. 1048–ок. 1123)  В течение жизни Омар Хайям Омар Хайям первым в истории математики предложил общий прием Хайям впервые высказал мысль о том, что уравнения Абу-ль-Вафа аль-Бузджани (940-998)Абу-л-Вафа ввёл тригонометрические функции тангенс и котангенс и построил их таблицы; нашёл с высокой Абу-л-Вафа составил комментарии к математическим трудам ал-Хорезми, Евклида, Диофанта, Гиппарха. Ему принадлежат книги Математика Древнего Востока развивалась древними учеными весьма точно. Многими знаниями, полученными Спасибо за внимание!
Слайды презентации

Слайд 2 С такой же скоростью, с которой

С такой же скоростью, с которой арабы и их фанатизм

арабы и их фанатизм распространились по Западному и Восточному

миру, они поднялись по лестнице образованности и быстро успели гораздо больше в интеллектуальной культуре, чем Западный мир.
ГЕГЕЛЬ


Слайд 3
IX–XII вв. – расцвет

IX–XII вв. – расцвет науки в арабоязычных странах. Багдад,

науки в арабоязычных странах. Багдад, ставший столицей халифата, превратился

в крупный научный центр.

Слайд 4 Мухаммед аль-Хорезми (787-ок. 850 гг.)
В

Мухаммед аль-Хорезми (787-ок. 850 гг.)  В сочинении аль-Хорезми впервые в

сочинении аль-Хорезми впервые в литературе на арабском языке была

дана таблица синусов и введен тангенс, зиджи (таблицы) аль-Хорезми по астрономии использовали впоследствии астрономы, как Востока, так и Европы. Наибольшую славу ученому принесли его математические труды. Арифметический трактат аль-Хорезми познакомил Европу с индийской позиционной системой чисел, нулем, арабскими цифрами, арифметическими действиями с целыми числами и дробями.


Слайд 5 «Краткая книга восполнения и противостояния»
Первое –

«Краткая книга восполнения и противостояния» Первое – восполнение (аль-джебр) – состоит

восполнение (аль-джебр) – состоит в перенесении отрицательного числа из

одной части уравнения в другую. От арабского аль-джебр и произошло современное слово алгебра.
Второе действие – валь-мукабала (противопоставление) – сокращение равных членов в обеих частях уравнения.


Слайд 6 Абу Райхан аль-Бируни (973–ок. 1050)
изготовил один из первых

Абу Райхан аль-Бируни (973–ок. 1050)изготовил один из первых научных глобусов, на

научных глобусов, на котором были отмечены населенные пункты, так

что можно было определять их координаты;
сконструировал несколько приборов для определения географической широты, которые описал в «Геодезии»

Слайд 7 тригонометрическим способом определил радиус Земли, получив примерно

тригонометрическим способом определил радиус Земли, получив примерно 6403 км (по

6403 км (по современным данным – 6371 км);
определил

угол наклона эклиптики к экватору, установив его вековые изменения. Расхождения между его данными (1020 г.) и современными составляют 45'';
оценил расстояние до Луны как 664 земных радиуса;
составил каталог 1029 звезд, положения которых вычислил заново из более ранних арабских зиджей;
считал Солнце и звезды огненными шарами, Луну и планеты – темными телами, отражающими свет; утверждал, что звезды в сотни раз больше Земли и подобны Солнцу;
заметил существование двойных звезд;
создал шаровую астролябию, что позволило следить за восходом и заходом звезд, за их движением на разных широтах и решать большое число задач.


Слайд 8 Способ определять расстояния
Чтобы определить ширину

Способ определять расстояния  Чтобы определить ширину оврага ВС, аль-Бируни предлагает

оврага ВС, аль-Бируни предлагает построить два прямоугольных треугольника АВС

и ACD с общей стороной АС. Наблюдатель в точке А при помощи астролябии измеряет угол ВАС и строит такой же – САМ. Точку на отрезке АМ закрепляет вехой. После этого, продолжив направление прямой ВС в сторону вехи М, отыскивает точку D, которая лежит на пересечении ВС и АМ. Теперь измеряет DC, это расстояние равно искомому расстоянию ВС.


Слайд 9 Радиус Земли
Угол «понижения горизонта» а он определил

Радиус Земли Угол «понижения горизонта» а он определил с помощью астролябии,

с помощью астролябии, а высоту горы, с которой производил

измерения, – с помощью сконструированного им высотомера. Пусть h = AD – высота горы, AB и AM – касательные к поверхности Земли, OD – радиус Земли, CMB – видимый горизонт.
Из рисунка видно, что R=(R+h)cosa, т.е.


Слайд 10 Омар Хайям (ок. 1048–ок. 1123)
В течение

Омар Хайям (ок. 1048–ок. 1123) В течение жизни Омар Хайям жил

жизни Омар Хайям жил и работал в Самарканде, Бухаре,

Исфахане. Хайям развил теорию кубических уравнений, написал математический трактат «Комментарий к трудным постулатам книги Евклида», труд «Трактат о доказательствах задач алгебры и валь-мукабалы».


Слайд 11 Омар Хайям первым в истории

Омар Хайям первым в истории математики предложил общий прием

математики предложил общий прием извлечения корней n-й степени из

чисел, основанный на знании формулы n-й степени двучлена. В своем втором трактате Омар приводит классификацию из 25 видов линейных, квадратных и кубических уравнений, причем указывает, что 11 из них могут быть решены при помощи 2-й книги «Начал» Евклида, а остальные 14 только при помощи конических сечений или специальных инструментов.
Самой важной работой Омара Хайяма были «Комментарии к трудностям во введениях книги Евклида». Третья книга «Комментариев» посвящена проблеме составления отношений, недостаточно развитых у Евклида. Омар здесь отходит от концепции о числе Аристотеля. Признавая, что число само по себе – натуральное число, собрание единиц, он предлагает ввести более абстрактное понятие о числе как о действительном положительном числе.

Слайд 12 Хайям впервые высказал мысль

Хайям впервые высказал мысль о том, что уравнения третьей

о том, что уравнения третьей степени не решаются с

помощью «свойств круга» (т.е. с помощью циркуля и линейки), он подчеркивал, что их можно решить только с привлечением конических сечений.
Хайям дал полную классификацию кубических уравнений, имеющих положительные корни. Он выделил 19 классов; из них 5 сводятся к линейным и квадратным. Для остальных 14 классов он указал метод решения с помощью конических сечений – параболы, равносторонней гиперболы, окружности.
Трактат «Комментарии к трудным постулатам книги Евклида». Стремясь доказать 5 постулат Евклида, Хайям сформулировал принцип, на котором основано его доказательство: «Две сходящиеся прямые пересекаются, и невозможно  чтобы прямые расходились в направлении схождения».
Кроме того, в трактате рассматривается четырехугольник с двумя прямыми углами при основании и равными боковыми сторонами. Ученый исследовал величину двух других углов четырехугольника. Используя свой принцип, Омар Хайям опроверг гипотезу острого и тупого углов, а затем доказал  5 постулат.

Слайд 13 Абу-ль-Вафа аль-Бузджани (940-998)
Абу-л-Вафа ввёл тригонометрические функции тангенс и котангенс и построил их таблицы;

Абу-ль-Вафа аль-Бузджани (940-998)Абу-л-Вафа ввёл тригонометрические функции тангенс и котангенс и построил их таблицы; нашёл с

нашёл с высокой точностью значение синуса одного градуса. Он

же вывел формулу для синуса суммы двух углов и  доказал теорему синусов для сферических треугольников:



Слайд 14 Абу-л-Вафа составил комментарии к математическим

Абу-л-Вафа составил комментарии к математическим трудам ал-Хорезми, Евклида, Диофанта, Гиппарха. Ему принадлежат книги

трудам ал-Хорезми, Евклида, Диофанта, Гиппарха. Ему принадлежат книги «О том, чему следует научиться

до изучения арифметики», «О том, что нужно знать писцам, дельцам и другим в науке арифметики», «О том, что необходимо ремесленнику из геометрических построений», «О применении шестидесятеричных таблиц», «Об определении ребра куба, квадрато-квадрата и того, что состоит из них обоих».
Он первым доказал, что в построения циркулем с фиксированным раствором и линейкой можно построить все точки, которые можно построить циркулем и линейкой


Слайд 15 Математика Древнего Востока развивалась древними учеными весьма

Математика Древнего Востока развивалась древними учеными весьма точно. Многими знаниями,

точно. Многими знаниями, полученными в далеком прошлом, мы пользуемся

до сих пор, а вымеренностью и величественностью древних сооружений восхищается весь мир.

  • Имя файла: prezentatsiya-po-matematike-na-temu-dostizheniya-arabskih-matematikov-ix-xiv-vekov.pptx
  • Количество просмотров: 114
  • Количество скачиваний: 0