Слайд 2
Пропорциональные отрезки
Отношением отрезков AB и CD называется отношение
их длин, т.е.
Отрезки AB и CD пропорциональны отрезкам
A1B1 и C1D1, если
Слайд 3
Определение подобных треугольников
Два треугольника называются
подобными, если их углы соответственно равны и стороны одного
треугольника пропорциональны сходственным сторонам другого.
Число k, равное отношению сходственных сторон треугольников, называется коэффициентом подобия
Слайд 4
Отношение площадей подобных треугольников
Отношением площадей двух
подобных треугольников равно квадрату коэффициента подобия
Биссектриса
треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам треугольника.
Слайд 5
Признаки подобия треугольников
I признак подобия треугольников
Если два угла одного треугольника соответственно равны двум углам
другого треугольника, то такие треугольники подобны
Дано:
ABC, A1B1C1,
A = A1, B = B1
Доказать:
ABC A1B1C1
Слайд 6
Признаки подобия треугольников
II признак подобия треугольников
Если две стороны одного треугольника пропорциональны двум сторонам другого
треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны
Дано:
ABC, A1B1C1,
A = A1
Доказать:
ABC A1B1C1
Слайд 7
Признаки подобия треугольников
III признак подобия треугольников
Если три стороны одного треугольника пропорциональны трем сторонам другого
треугольника, то такие треугольники подобны
Дано:
ABC, A1B1C1,
Доказать:
ABC A1B1C1
Слайд 8
Применение подобия к доказательству теорем
Средняя линия треугольника
Средней линией треугольника называется отрезок, соединяющий середины двух
сторон
Средняя линия треугольника
параллельна одной из его сторон
и равна половине этой стороны
Дано:
ABC, MN – средняя линия
Доказать:
MNAC, MN = AC
Слайд 9
Применение подобия к решению задач
Медианы
треугольника пересекаются в одной точке, которая делит каждую медиану
в отношении 2 : 1,считая от вершины
Слайд 10
Применение подобия к решению задач
Высота
прямоугольного треугольника, проведенная из вершины прямого угла, разделяет треугольник
на два подобных прямоугольных треугольника, каждый из которых подобен данному треугольнику.
ABC ACD,
ABC CBD
ACD CBD
Слайд 11
Применение подобия к доказательству теорем
1.Высота
прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее
пропорциональное между отрезками, на которые делится гипотенуза этой высотой