FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.
Email: Нажмите что бы посмотреть
Прокл в своем комментарии к «Началам» Евклида пишет относительно предложения о том, что квадрат гипотенузы равен сумме квадратов катетов, следующее: «Если слушать тех, кто любит повторять древние легенды, то придется сказать, что эта теорема восходит к Пифагору. Рассказывают, что в честь этого открытия он принес в жертву быка». О том же рассказывает и другой греческий историк древности – Плутарх (I в.). На основе этих и других преданий долгое время считали, что до Пифагора эта теорема не была известна и назвали ее поэтому «теоремой Пифагора»…
Однако теперь известно, что эта важнейшая теорема встречается в вавилонских текстах, написанных за 1200 лет до Пифагора.
Геометрическое доказательство Евклида
Итак, квадрат ABFH равновелик прямоугольнику BJLD.
(SBJLD=SABFH)
Но AC=KC, BC=CE
∆ACE=ΔKCB (по двум сторонам
и углу, заключенному
между ними).
Итак, квадрат ACKG равновелик прямоугольнику JCEL.
(SACKG=SJCEL)
Доказательство основывается на том, что равносоставленные фигуры равновелики: квадраты, построенные на катетах и гипотенузе, разбиваются на многоугольники так, что каждому многоугольнику из состава квадрата на гипотенузе соответствует равный многоугольник одного из квадратов на катетах.
Достаточно посмотреть на чертеж, чтобы понять все доказательство (см. рис.).
Это доказательство дал багдадский математик и астроном X в. ан-Найризий (латинизированное имя – Анариций).
А.Ю. Давидов "Элементарная геометрия"
E
Пусть ABCD – квадрат, сторона которого равна гипотенузе прямоугольного треугольника ABF (AB=c, BF=a, AF=b)
Пусть DE перпендикулярна к AF, CH – к DE, BG – к CH.
Тогда равны треугольники AFB, BGC, CHD, DEA.
EF=FG=GH=HE=b-a.