Слайд 3
Макрофото магнитной
головки
Слайд 4
Гермозона
Гермозона включает в себя корпус из прочного сплава,
собственно диски (пластины) с магнитным покрытием, блок головок с
устройством позиционирования, электропривод шпинделя.
Блок головок — пакет рычагов из пружинистой стали (по паре на каждый диск). Одним концом они закреплены на оси рядом с краем диска. На других концах (над дисками) закреплены головки.
Слайд 5
Блок электроники
Блок управления представляет собой систему управления, принимающую
электрические сигналы позиционирования головок, и вырабатывающую управляющие воздействия приводом
типа «звуковая катушка», коммутации информационных потоков с различных головок, управления работой всех остальных узлов (к примеру, управление скоростью вращения шпинделя), приёма и обработки сигналов с датчиков устройства (система датчиков может включать в себя одноосный акселерометр, используемый в качестве датчика удара, трёхосный акселерометр, используемый в качестве датчика свободного падения, датчик давления, датчик угловых ускорений, датчик температуры).
Слайд 8
1956 год — жёсткий диск IBM 350 в
составе первого серийного компьютера IBM 305 RAMAC. Накопитель занимал
ящик размером с большой холодильник и имел вес 971 кг, а общий объём памяти 50 вращавшихся в нём покрытых чистым железом тонких дисков диаметром 610 мм составлял около 5 миллионов 6-битных байт (3,5 Мб в пересчёте на 8-битные байты).
1980 год — первый 5,25-дюймовый Winchester, Shugart ST-506, 5 Мб.
1981 год — 5,25-дюймовый Shugart ST-412, 10 Мб.
1986 год — стандарты SCSI, ATA(IDE).
1991 год — максимальная ёмкость 100 Мб.
1995 год — максимальная ёмкость 2 Гб.
1997 год — максимальная ёмкость 10 Гб.
1998 год — стандарты UDMA/33 и ATAPI.
1999 год — IBM выпускает Microdrive ёмкостью 170 и 340 Мб.
2000 год — IBM выпускает Microdrive ёмкостью 500 Мб и 1 Гб.
2002 год — стандарт ATA/ATAPI-6 и накопители емкостью свыше 137 Гб.
2003 год — появление SATA.
2003 год — Hitachi выпускает Microdrive ёмкостью 2 Гб.
2004 год — Seagate выпускает ST1 — аналог Microdrive ёмкостью 2.5 и 5 Гб.
2005 год — максимальная ёмкость 500 Гб.
2005 год — стандарт Serial ATA 3G (или SATA II).
2005 год — появление SAS (Serial Attached SCSI).
2005 год — Seagate выпускает ST1 — аналог Microdrive ёмкостью 8 Гб.
2006 год — применение перпендикулярного метода записи в коммерческих накопителях.
2006 год — появление первых «гибридных» жёстких дисков, содержащих блок флеш-памяти.
2006 год — Seagate выпускает ST1 — аналог Microdrive ёмкостью 12 Гб.
2007 год — Hitachi представляет первый коммерческий накопитель ёмкостью 1 Тб.
2009 год — на основе 500-гигабайтных пластин Western Digital, затем Seagate Technology LLC выпустили модели ёмкостью 2 Тб.[22]
2009 год — Samsung выпустила первые жёсткие диски с интерфейсом USB 2.0 [23]
2009 год — Western Digital объявила о создании 2,5-дюймовых HDD объемом 1 Тб (плотность записи — 333 Гб на одной пластине)[24]
2009 год — появление стандарта SATA 3.0 (SATA 6G).
2010 год — Seagate выпускает жёсткий диск объемом 3 Тб [5].
2010 год — Samsung выпускает жёсткий диск с пластинами, у которых плотность записи — 667 Гб на одной пластине [25]
2011 год — Western Digital выпустила первый диск на 750 Гб пластинах[26].
Слайд 9
Адресация данных
Минимальной адресуемой областью данных на жёстком диске
является сектор. Размер сектора традиционно равен 512 байт.[15] В
2006 году IDEMA объявила о переходе на размер сектора 4096 байт, который планируется завершить к 2010 году[16]. Western Digital уже сообщил о начале использования новой технологии форматирования, названой Advanced Format, и выпустил накопитель (WD10EARS-00Y5B1) использующий новую технологию.
В Windows Vista, Windows 7, Windows Server 2008 и Windows Server 2008 R2 присутствует ограниченная поддержка дисков с таким размером сектора.[17][18]
Существует 2 основных способа адресации секторов на диске: цилиндр-головка-сектор (англ. cylinder-head-sector, CHS) и линейная адресация блоков (англ. linear block addressing, LBA
Слайд 10
CHS
При этом способе сектор адресуется по его физическому
положению на диске 3 координатами — номером цилиндра, номером
головки и номером сектора. В дисках, объёмом больше 528 482 304 байт (504 Мб), со встроенными контроллерами эти координаты уже не соответствуют физическому положению сектора на диске и являются «логическими координатами» (см. выше).
Слайд 11
LBA
При этом способе адрес блоков данных на носителе
задаётся с помощью логического линейного адреса. LBA-адресация начала внедряться
и использоваться в 1994 году совместно со стандартом EIDE (Extended IDE). Стандарты ATA требуют однозначного соответствия между режимами CHS и LBA
Метод LBA соответствует Sector Mapping для SCSI. BIOS SCSI-контроллера выполняет эти задачи автоматически, то есть для SCSI-интерфейса метод логической адресации был характерен изначально.
Слайд 12
Технологии записи данных
Принцип работы жёстких дисков похож на
работу магнитофонов. Рабочая поверхность диска движется относительно считывающей головки
(например, в виде катушки индуктивности с зазором в магнитопроводе). При подаче переменного электрического тока (при записи) на катушку головки возникающее переменное магнитное поле из зазора головки воздействует на ферромагнетик поверхности диска и изменяет направление вектора намагниченности доменов в зависимости от величины сигнала. При считывании перемещение доменов у зазора головки приводит к изменению магнитного потока в магнитопроводе головки, что приводит к возникновению переменного электрического сигнала в катушке из-за эффекта электромагнитной индукции.
Слайд 13
Метод продольной записи
Биты информации записываются с помощью маленькой
головки, которая, проходя над поверхностью вращающегося диска, намагничивает миллиарды
горизонтальных дискретных областей — доменов. При этом вектор намагниченности домена расположен продольно, то есть параллельно поверхности диска. Каждая из этих областей является логическим нулём или единицей, в зависимости от намагниченности.
Максимально достижимая при использовании данного метода плотность записи составляет около 23 Гбит/см². К 2010 году этот метод был практически вытеснен методом перпендикулярной записи.
Слайд 14
Метод перпендикулярной записи
Метод перпендикулярной записи — это технология,
при которой биты информации сохраняются в вертикальных доменах. Это
позволяет использовать более сильные магнитные поля и снизить площадь материала, необходимую для записи 1 бита. Плотность записи у современных (на 2009 год) образцов — 400 Гбит на кв/дюйм.[19]
Жёсткие диски с перпендикулярной записью доступны на рынке с 2005 года.
Слайд 15
Структурированные носители данных
Структурированный (паттернированный) носитель данных (англ. Bit
patterned media), — перспективная технология хранения данных на магнитном
носителе, использующая для записи данных массив одинаковых магнитных ячеек, каждая из которых соответствует одному биту информации, в отличие от современных технологий магнитной записи, в которых бит информации записывается на нескольких магнитных доменах.