Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему по математике на тему Вводное повторение (8 класс)

Содержание

Как появилась алгебра Алгебра как искусство решать уравнения зародилась очень давно в связи с потребностями практики, в результате поиска общих приемов решения однотипных задач. В процессе развития алгебра из науки об уравнениях превратилась
Вводное повторениеЧему бы ты ни учился,   ты учишься для себя. Петроний Как появилась алгебра    Алгебра как искусство решать уравнения зародилась Темы повторения:Глава I. Выражения, тождества, уравнения.Глава II. Функции.Глава III. Степень с натуральным Глава I. Выражения, тождества, уравнения 1. Заполните таблицу:Какими числами являются соответственные значения Глава I. Выражения, тождества, уравнения Равенство, содержащее переменную называют уравнением с одним Глава I. Выражения, тождества, уравненияРешите уравнение:  Правила раскрытия скобок: 1) если А знаете ли Вы, что первое счётное устройство — абак? Глава II. ФункцииЗависимость одной переменной от другой называют функциональной зависимостью или функцией, О функциях  В первой половине 17 века в связи с развитием Какие из указанных функций мы изучали? Глава II. ФункцииЧастный случаем линейной функции является прямая пропорциональность. Как называются графики, изображенные на рисунках и какими свойствами они обладают?квадратная параболакубическая парабола Постройте графики следующих функций:а) y = 2x+3б) y = 7 – 9x Глава III. Степень с натуральным показателем    Степенью числа Глава III. Степень с натуральным показателемИспользуя свойства выполните упражнения: Запишите одночлен в Глава IV. Многочлены         Многочленом Глава IV. Многочлены Выполните умножение:  Если все одночлены в многочлене приведены к Глава V. Формулы сокращенного умноженияСформулируйте тождества сокращенного умножения и используя их выполните Линейным уравнением с двумя переменными называется уравнение вида Глава VI . Системы линейных уравненийПара значений (х;у), которая одновременно является решением Глава VI . Системы линейных уравненийГрафический метод решения. С его помощью можно Глава VI . Системы линейных уравненийМетод алгебраического сложения. уравнивают коэффициенты при одной Глава VI . Системы линейных уравненийРешите системы:графически:  методом подстановки: методом сложения: Наук так много на земле,У всех – своя тематика.Но есть одна из
Слайды презентации

Слайд 2 Как появилась алгебра
Алгебра как

Как появилась алгебра  Алгебра как искусство решать уравнения зародилась очень

искусство решать уравнения зародилась очень давно в связи с

потребностями практики, в результате поиска общих приемов решения однотипных задач. В процессе развития алгебра из науки об уравнениях превратилась в науку об операциях, более или менее сходных с действиями над числами.

Слайд 3 Темы повторения:
Глава I. Выражения, тождества, уравнения.
Глава II. Функции.
Глава

Темы повторения:Глава I. Выражения, тождества, уравнения.Глава II. Функции.Глава III. Степень с

III. Степень с натуральным показателем.
Глава IV. Многочлены.
Глава V. Формулы

сокращенного умножения.

Глава VI . Системы линейных уравнений.


Слайд 4 Глава I. Выражения, тождества, уравнения
1. Заполните таблицу:

Какими числами

Глава I. Выражения, тождества, уравнения 1. Заполните таблицу:Какими числами являются соответственные

являются соответственные значения
выражений 3х-1 и

– 3х+1 ?

2. Какие из данных равенств не являются тождеством?

–7

7

– 4

4

– 1

1

2

– 2

5

– 5

11

– 11

14

– 14

Какое равенство называется тождеством?

Счет и вычисления - основа порядка в голове.
(Песталоцци)


Слайд 5 Глава I. Выражения, тождества, уравнения
Равенство, содержащее переменную называют

Глава I. Выражения, тождества, уравнения Равенство, содержащее переменную называют уравнением с

уравнением с одним неизвестным (переменной).
Корнем уравнения называют

значение переменной,
при котором уравнение обращается в верное
равенство.

Решить уравнение – значит найти его корни или
доказать, что корней нет.

Уравнение вида ax=b, где х – переменная,
a и b – некоторые числа, называют линейным
уравнением с одной переменной.


Слайд 6 Глава I. Выражения, тождества, уравнения
Решите уравнение:


Правила

Глава I. Выражения, тождества, уравненияРешите уравнение: Правила раскрытия скобок: 1) если

раскрытия скобок:
1) если перед скобками стоит знак плюс,

то можно опустить
скобки, сохранив знаки слагаемых, стоящих в скобках.
2) Если перед скобками стоит знак минус, то можно опустить
скобки, изменив знаки всех слагаемых, стоящих в скобках
на противоположный.
3) Число, стоящее за скобками умножается на каждое
слагаемое, стоящее в скобках.

Слайд 7 А знаете ли Вы, что первое счётное устройство

А знаете ли Вы, что первое счётное устройство — абак?

— абак?
Первыми «вычислительными устройствами», которыми

пользовались в древности люди, были пальцы рук и камешки. Позднее появились бирки с зарубками и верёвки с узелками. В Древнем Египте и Древней Греции задолго до нашей эры использовали абак – доску с полосками, по которым продвигались камешки. Это было первое устройство, специально предназначенное для вычислений. Со временем абак совершенствовали – в римском абаке камешки или шарики передвигались по желобкам.
Абак просуществовал до 18 века, когда его
заменили письменные вычисления.
Русский абак – счёты появились в 16 веке.
Ими пользуются и в наши дни. Большое преимущество
русских счётов в том, что они основаны на
десятичной системе счисления, а не на
пятеричной, как все остальные абаки.

Слайд 8 Глава II. Функции
Зависимость одной переменной от другой называют

Глава II. ФункцииЗависимость одной переменной от другой называют функциональной зависимостью или


функциональной зависимостью или функцией, если каждому
значению независимой переменной

соответствует
единственное значение зависимой переменной.

Все значения, которые принимает независимая переменная, образуют область определения функции.
Значения зависимой переменной называют значениями функции.

Графиком функции называется множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты – соответствующим значениям функции.


Слайд 9 О функциях
В первой половине 17 века

О функциях В первой половине 17 века в связи с развитием

в связи с развитием механики в математику идеи изменения

и движения. Термин «функция» впервые ввел немецкий математик Г. Лейбниц. У него функция связывалась с геометрическим образом (графиком). В дальнейшем функцию рассматривают как аналитическое выражение.

Слайд 10 Какие из указанных функций мы изучали?

Какие из указанных функций мы изучали?

Слайд 12 Глава II. Функции
Частный случаем линейной функции является

Глава II. ФункцииЧастный случаем линейной функции является прямая пропорциональность.

прямая пропорциональность.


Слайд 13 Как называются графики, изображенные на рисунках и какими

Как называются графики, изображенные на рисунках и какими свойствами они обладают?квадратная параболакубическая парабола

свойствами они обладают?
квадратная парабола
кубическая парабола


Слайд 14 Постройте графики следующих функций:
а) y = 2x+3
б) y

Постройте графики следующих функций:а) y = 2x+3б) y = 7 –

= 7 – 9x
в ) y = (x+1)2

г) y = (x-1)3

Слайд 15 Глава III. Степень с натуральным показателем

Глава III. Степень с натуральным показателем  Степенью числа  с

Степенью числа с натуральным

показателем
, называют выражение , равное произведению
множителей, каждый из которых равен .

Свойства степени:


Слайд 16 Глава III. Степень с натуральным показателем
Используя свойства выполните

Глава III. Степень с натуральным показателемИспользуя свойства выполните упражнения: Запишите одночлен

упражнения:
Запишите одночлен в стандартном виде:
Принадлежит ли графику

функции

точка:


Слайд 17 Глава IV. Многочлены

Глава IV. Многочлены     Многочленом называется сумма одночленов. 

Многочленом называется сумма одночленов.       Одночлены,

входящие в состав многочлена, называют его членами.           Членами многочлена   4x2у – 3ab   являются   4x2y   и   – 3ab   .     Если многочлен состоит из двух членов, то его называют двучленом:               15х5y – 7а3b4;       y +20m ;       14a3+13a2.       Если из трех – трехчленом:    

 5x3y – 7a3b4+5;   y+5b4 – 3x3;  7a2+13a4+5ab2. 

Чтобы умножить одночлен на многочлен, нужно умножить этот
одночлен на каждый член многочлена и полученные
произведения сложить.

Чтобы умножить многочлен на многочлен, нужно каждый
член одного многочлена умножить на каждый член
другого многочлена и полученные произведения сложить.


Слайд 18 Глава IV. Многочлены
Выполните умножение:

 Если все одночлены в

Глава IV. Многочлены Выполните умножение:  Если все одночлены в многочлене приведены

многочлене приведены к стандартному виду и  среди них нет подобных,

то говорят, что это многочлен стандартного вида.             нестандартный вид                 стандартный вид             5x2yx – 7xyx 2+5axa     =     5a2x – 2x3y .  

Разложите на множители многочлен:

Решите уравнение:


Слайд 19 Глава V. Формулы сокращенного умножения
Сформулируйте тождества сокращенного умножения

Глава V. Формулы сокращенного умноженияСформулируйте тождества сокращенного умножения и используя их

и используя их выполните преобразования.
Представьте в виде многочлена:
;
;
;
Решите уравнения:


Слайд 20 Линейным уравнением с двумя переменными называется уравнение вида

Линейным уравнением с двумя переменными называется уравнение вида

- переменные,
- некоторые числа.


Глава VI . Системы линейных уравнений

Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.


Слайд 21 Глава VI . Системы линейных уравнений
Пара значений (х;у),

Глава VI . Системы линейных уравненийПара значений (х;у), которая одновременно является

которая одновременно является решением каждого из уравнений системы, называют

решением системы.

Методы решения систем линейных уравнений:
1) графический метод;
2) метод подстановки;
3) метод алгебраического сложения.


Слайд 22 Глава VI . Системы линейных уравнений
Графический метод решения.

Глава VI . Системы линейных уравненийГрафический метод решения. С его помощью


С его помощью можно сделать следующие выводы:
построить в одной

системе координат графики уравнений:
графиками обоих уравнений системы являются прямые;
эти прямые могут пересекаться (только в одной точке) – система имеет
единственное решение;
эти прямые могут быть параллельны – система несовместима – нет решений;
эти прямые совпадают – система неопределенна – система имеет
бесчисленное множество решений.

Метод подстановки.
Выразить из какого – нибудь уравнения системы одну переменную через другую;
подставить полученное выражение в другое уравнение;
решить полученное уравнение;
найди соответствующее значение второй переменной.
Записать ответ в виде пары значений (х; у) .


Слайд 23 Глава VI . Системы линейных уравнений
Метод алгебраического сложения.

Глава VI . Системы линейных уравненийМетод алгебраического сложения. уравнивают коэффициенты при

уравнивают коэффициенты при одной из переменных;
складывают (или вычитают)

левые и правые части уравнений системы;
решают получившееся уравнение с одной переменной;
находят соответствующее значение второй переменной.
Записывают ответ в виде пары значений (х; у).


Слайд 24 Глава VI . Системы линейных уравнений
Решите системы:

графически:

Глава VI . Системы линейных уравненийРешите системы:графически: методом подстановки: методом сложения:


методом подстановки:
методом сложения:


  • Имя файла: prezentatsiya-po-matematike-na-temu-vvodnoe-povtorenie-8-klass.pptx
  • Количество просмотров: 245
  • Количество скачиваний: 47