Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему по математике на тему Статистика (11 класс)

Содержание

Статистика(лат. «status») состояние делСтатистика — это точная наука, изучающая методы сбора, анализа и обработки данных, которые описывают массовые действия, явления и процессы.
Статистическая   обработка   данных Статистика(лат. «status») состояние делСтатистика — это точная наука, изучающая методы сбора, анализа Статистика(лат. «status») состояние делМатематическая статистика – это раздел математики, изучающий методы сбора, Статистика(лат. «status») состояние делСтатистика имеет дело со случайными величинами.Случайные величины-величины, которые в результаткол ─ ворезультатовМногоугольникраспределенийГистограммараспределений Круговаядиаграмма Этапы статистической обработки данных3. Построить графики распределения данных4. Получить паспорт измерения данных ХРТаблица распределения значений случайной величины по их вероятностям Таблица распределения значений случайной величины по их относительным частотам 0,10,50,30,232145 Рост 50 спортсменок занесён в таблицу:79810835 85367153154152151150148149 Гистограммы представляют собой ступенчатую фигуру, составленную из прямоугольников. Основание Гистограмма При изучении реальных явлений часто бывает невозможно обследовать все элементы совокупности. На пример:Генеральная совокупность – жители большого города. Репрезентативная выборка – жильцымногоквартирного дома, - объем генеральной совокупности- объем репрезентативной выборки- частоты- частоты в генеральной совокупности Для идеально составленной репрезентативной выборки должно выполняться равенство:Где i – порядковый номер значения признака (1≤i≤k). Фабрика резиновых изделий выиграла тендер на изготовление N=100 солдат (объем репрезентативной выборки) В книгах по статистике моду, медиану и среднее арифметическое объединяют одним термином Мода23182520252532373426342525Модой ряда чисел называется число, которое встречается в данном ряду чаще других. МедианаВ таблице приведены данные о продаже в течении недели картофеля, завезённого в Медиана23182520252532373426342525Составим упорядоченный ряд чисел18; 20; 23; 25; 25; 25; 25; 26; 32; Среднее арифметическое: 27 минутСредним значением случайной величиныназывается среднее арифметическое всех её значений Произвели сбор данных о расходе электроэнергии в 9 квартирах. Получили следующие результаты:64, В городе пять школ. В таблице приведен средний балл, полученный выпускниками каждой Размах23182520252532373426342537Наибольшее - 18Наименьшее - 37 - 18= 19Меры разбросаРазмахом ряда чисел называется Меры разбросаОтклонением от среднего называют разность между рассматриваемым значением случайной величины и средним Меры разбросаОчевидно, отклонение от среднего может быть как положительным, так и отрицательным Меры разбросаСреднее арифметическое квадратов отклонений называется дисперсией и обозначается D. Для оценки степени отклонения от На испытательном стенде оружейного заводапристреливают готовые ружья, т.е. уточняют и корректируют их прицел.
Слайды презентации

Слайд 2 Статистика
(лат. «status») состояние дел
Статистика — это точная наука,

Статистика(лат. «status») состояние делСтатистика — это точная наука, изучающая методы сбора,

изучающая методы сбора, анализа и обработки данных, которые описывают

массовые действия, явления и процессы.

Слайд 3 Статистика
(лат. «status») состояние дел
Математическая статистика – это раздел

Статистика(лат. «status») состояние делМатематическая статистика – это раздел математики, изучающий методы

математики, изучающий методы сбора, систематизации и обработки результатов наблюдений

случайных массовых явлений с целью выявления существующих закономерностей.

Слайд 4 Статистика
(лат. «status») состояние дел
Статистика имеет дело со случайными

Статистика(лат. «status») состояние делСтатистика имеет дело со случайными величинами.Случайные величины-величины, которые

величинами.
Случайные величины-величины, которые в ходе наблюдений или испытаний могут

принимать различные значения. Можно сказать, чтоих значения зависят от случая.


Слайд 5 результат
кол ─ во
результатов
Многоугольник
распределений
Гистограмма
распределений

результаткол ─ ворезультатовМногоугольникраспределенийГистограммараспределений

Слайд 6 Круговая
диаграмма

Круговаядиаграмма

Слайд 7 Этапы статистической обработки данных
3. Построить графики
распределения данных




4.

Этапы статистической обработки данных3. Построить графики распределения данных4. Получить паспорт измерения

Получить паспорт измерения данных



объём, размах, мода измерения,
среднее (или

среднее арифметическое)

1. Упорядочить и
сгруппировать
данные измерения

2. Составить таблицу
распределения данных


Слайд 8 Х
Р
Таблица
распределения
значений
случайной
величины
по их
вероятностям

ХРТаблица распределения значений случайной величины по их вероятностям

Слайд 9 Таблица распределения значений случайной величины по их относительным

Таблица распределения значений случайной величины по их относительным частотам

частотам


Слайд 10 0,1
0,5
0,3
0,2
3
2
1
4
5

0,10,50,30,232145

Слайд 11 Рост 50 спортсменок занесён в таблицу:
7
9
8
10
8
3
5

Рост 50 спортсменок занесён в таблицу:79810835

Слайд 12 8
5
3
6
7
153
154
152
151
150
148
149

85367153154152151150148149

Слайд 13 Гистограммы представляют собой ступенчатую фигуру,

Гистограммы представляют собой ступенчатую фигуру, составленную из прямоугольников. Основание

составленную из прямоугольников. Основание каждого прямоугольника равно длине интервала,

а высота – частоте или относительной частоте. Таким образом, в гистограмме в отличие от обычной столбчатой диаграммы, основание прямоугольников выбирают не произвольно, а строго определенной длины интервала.

Слайд 14 Гистограмма

Гистограмма

Слайд 15 При изучении реальных явлений часто бывает невозможно

При изучении реальных явлений часто бывает невозможно обследовать все элементы

обследовать все элементы совокупности.
Вместо изучения всех элементов совокупности,

которую называют генеральной совокупностью, обследуют ее значительную часть, выбранную случайным образом, называемую выборкой.

Выборку называют репрезентативной, если в ней присутствуют все значения случайной величины примерно в тех же пропорциях, что и в генеральной совокупности.

Число объектов генеральной совокупности и выборки называют соответственно объемом генеральной совокупности и объемом выборки.


Слайд 16 На пример:
Генеральная совокупность – жители
большого города.
Репрезентативная

На пример:Генеральная совокупность – жители большого города. Репрезентативная выборка – жильцымногоквартирного

выборка – жильцы
многоквартирного дома, в котором
примерно в тех же

пропорциях, что и
в самом городе, проживают люди разных
возрастов.

Слайд 17 - объем генеральной совокупности
- объем репрезентативной выборки
- частоты
-

- объем генеральной совокупности- объем репрезентативной выборки- частоты- частоты в генеральной совокупности

частоты в генеральной совокупности


Слайд 18 Для идеально составленной репрезентативной выборки должно выполняться равенство:
Где

Для идеально составленной репрезентативной выборки должно выполняться равенство:Где i – порядковый номер значения признака (1≤i≤k).

i – порядковый номер значения признака (1≤i≤k).


Слайд 19 Фабрика резиновых изделий выиграла тендер на

Фабрика резиновых изделий выиграла тендер на изготовление

изготовление

армейских противогазов. Для определения того, сколько противогазов каждого из пяти существующих размеров следует изготовить, были сделаны замеры у N=100 случайным образом выбранных солдат ближайшей воинской части. Распределение размеров противогазов X по частотам M оказалось следующим:

Сколько противогазов каждого размера будет изготавливать фабрика?


Слайд 20 N=100 солдат (объем репрезентативной выборки)

N=100 солдат (объем репрезентативной выборки)


- объем генеральной совокупности
Количество противогазов соответствующего размера можно найти по формуле (2).

0,05

500

0,21

0,47

0,22

0,05

2100

4700

2200

500

=100

=1

=10000


Слайд 21 В книгах по статистике моду, медиану и среднее

В книгах по статистике моду, медиану и среднее арифметическое объединяют одним

арифметическое объединяют одним термином – меры центральной тенденции

( или, короче, центральные тенденции).

Центральные тенденции


Слайд 22 Мода
23
18
25
20
25
25
32
37
34
26
34
25
25
Модой ряда чисел называется
число, которое встречается в

Мода23182520252532373426342525Модой ряда чисел называется число, которое встречается в данном ряду чаще других.


данном ряду чаще других.


Слайд 23 Медиана
В таблице приведены данные о продаже
в течении

МедианаВ таблице приведены данные о продаже в течении недели картофеля, завезённого

недели картофеля, завезённого
в овощную палатку.Найдите медиану ряда чисел.
290
Составим

упорядоченный ряд чисел

250; 275; 286; 290; 296; 315; 325

1

2

3

4

5

6

7

Медианой упорядоченного ряда
чисел с нечётным числом членов
называется число,
записанное посередине ряда.


Слайд 24 Медиана
23
18
25
20
25
25
32
37
34
26
34
25
25
Составим упорядоченный ряд чисел
18; 20; 23; 25; 25;

Медиана23182520252532373426342525Составим упорядоченный ряд чисел18; 20; 23; 25; 25; 25; 25; 26;

25; 25; 26; 32; 34; 34; 37
Медианой упорядоченного ряда

чисел
с чётным числом членов называется
среднее арифметическое двух чисел,
записанных посередине ряда.

Слайд 25 Среднее арифметическое: 27 минут
Средним значением случайной величины
называется среднее

Среднее арифметическое: 27 минутСредним значением случайной величиныназывается среднее арифметическое всех её

арифметическое всех её значений
При опросе 12 учащихся узнали

время затраченное на выполнение домашнего задания по алгебре.

23; 18; 25; 20; 25; 25; 32; 37; 34; 26; 34; 25

Получили такие данные:

Средним арифметическим ряда чисел называется частное от деления суммы этих чисел на число слагаемых.


Слайд 26 Произвели сбор данных о расходе электроэнергии в 9

Произвели сбор данных о расходе электроэнергии в 9 квартирах. Получили следующие

квартирах. Получили следующие результаты:
64, 72, 72, 75, 78, 82,

85, 91, 93

Составим из данных, приведенных в таблице,
упорядоченный ряд:

Найдите размах, моду и медиану

29

72

78


Слайд 27 В городе пять школ. В таблице приведен средний

В городе пять школ. В таблице приведен средний балл, полученный выпускниками

балл, полученный выпускниками каждой из этих школ за экзамен

по математике. Найдите средний балл выпускного экзамена по математике по всему городу?


1. 60+70+30+50+70=280
2. Если умножить количество учеников в школе на средний балл по школе , то получиться сумма баллов в этой школе, а если сложить все такие произведения, то сумма всех баллов по городу равна
60 ∙60+70 ∙54+30 ∙68+50 ∙ 72+70∙54=
=3600+3780+2040+3600+3780 = 16800
3. Средний балл по городу равен 1685400:280=60


Слайд 28 Размах
23
18
25
20
25
25
32
37
34
26
34
25
37
Наибольшее -
18
Наименьшее -
37 - 18
= 19
Меры

Размах23182520252532373426342537Наибольшее - 18Наименьшее - 37 - 18= 19Меры разбросаРазмахом ряда чисел

разброса
Размахом ряда чисел называется
разность между

наибольшим и
наименьшим этих чисел.

Слайд 29 Меры разброса
Отклонением от среднего называют разность между рассматриваемым значением

Меры разбросаОтклонением от среднего называют разность между рассматриваемым значением случайной величины и

случайной величины и средним значением выборки.
Пример:
Задана выборка 52,54,50,48,46.
Пусть значение величины X₁=52, а

значение среднего 
X=(52+54+50+48+46);5=50,
отклонение от среднего X₁−X=52−50=2.

Слайд 30 Меры разброса
Очевидно, отклонение от среднего может быть как

Меры разбросаОчевидно, отклонение от среднего может быть как положительным, так и

положительным, так и отрицательным числом. Нетрудно понять, что сумма

отклонений всех значений выборки от среднего значения равна нулю. Поэтому характеристикой стабильности элементов совокупности может служить сумма квадратов отклонений от среднего(чем меньше, тем лучше).

Слайд 31 Меры разброса
Среднее арифметическое квадратов
отклонений называется дисперсией 
и обозначается D.

Для оценки

Меры разбросаСреднее арифметическое квадратов отклонений называется дисперсией и обозначается D. Для оценки степени отклонения

степени отклонения от среднего значения удобно иметь дело с

величиной той же размерности, что и сама величина X. С этой целью используют значения корня квадратного из дисперсии

Корень квадратный из дисперсии
называют средним квадратичным
отклонением и обозначают 


Слайд 32 На испытательном стенде оружейного завода
пристреливают готовые ружья, т.е.

На испытательном стенде оружейного заводапристреливают готовые ружья, т.е. уточняют и корректируют их прицел.

уточняют и корректируют их прицел.


  • Имя файла: prezentatsiya-po-matematike-na-temu-statistika-11-klass.pptx
  • Количество просмотров: 378
  • Количество скачиваний: 71