интервале (−18; 6). Найдите количество точек минимума функции f(x) на
отрезке [−13;1].Точки минимума соответствуют точкам смены знака производной с минуса на плюс. На отрезке [−13;1] функция имеет одну точку минимума x = −9.
1
FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.
Email: Нажмите что бы посмотреть
Точки минимума соответствуют точкам смены знака производной с минуса на плюс. На отрезке [−13;1] функция имеет одну точку минимума x = −9.
1
2
На рисунке изображен график производной функции f(x), определенной на интервале (−11; 11). Найдите количество точек экстремума функции f(x) на отрезке [−10; 10].
Промежутки возрастания данной функции f(x) соответствуют промежуткам, на которых ее производная неотрицательна то есть промежуткам (−7; −5,5] и [−2,5; 4). Данные промежутки содержат целые точки –6, –2, –1, 0, 1, 2, 3. Их сумма равна –3.
3
4
На рисунке изображен график производной функции f(x), определенной на интервале (−5; 7). Найдите промежутки убывания функции f(x). В ответе укажите сумму целых точек, входящих в эти промежутки.
Промежутки возрастания функции f(x) соответствуют промежуткам, на которых производная функции неотрицательна, то есть промежуткам (−11; −10], [−7; −1], [2; 3). Наибольший из них — отрезок [−7; −1], длина которого 6.
5
6
На рисунке изображен график производной функции f(x), определенной на интервале (−2; 12). Найдите промежутки убывания функции f(x). В ответе укажите длину наибольшего из них.
7