Слайд 2
«Параллельный мир -
нечто, состоящее из слов и линий»
Помню
снов тоску.
Тогда перед зеркалом стоял
и взгляд находил,
растворял.
Мысли бились друг о друга.
Так, бильярдные шары у вечерней пустоты
откалывают штукатурку звуков.
Так, будильник-сфинкс равнодушно и угрюмо
кожу чувств царапает, глотает.
Но в молчанье свой предел.
Всполохнутся мошки бликов,
солнце-сердце растопит все снега.
Это прошлое взбунтует
и вздохнет уснувшая мечта.
Анатолий Кудрявцев
Слайд 3
Две плоскости называются параллельными, если они не пересекаются.
Плоскости
Пересекаются
Параллельны
β
α
α
|| β
α ∩ β
Слайд 4
Параллельные плоскости в природе
Если стоять спиной к водопаду,
скалы образуют геометрически правильные параллельные плоскости
Слайд 5
Параллельные плоскости в технике
Параллельные плоскости «летают»
Слайд 6
Параллельные плоскости в быту
В своей сущности и основе
геометрия –это пространственное воображение, пронизанное и организованное строгой логикой
В ней всегда присутствуют эти два неразрывно связанных элемента: наглядная картина и точная формулировка, строгий логический вывод.
Там, где нет одной из этих сторон, нет и подлинной геометрии.
Слайд 7
Параллельные плоскости в искусстве
Д.Грин
«Мечты»
Силуэты мальчика расположены в
параллельных плоскостях
Слайд 8
Невозможные структуры
Жос Де Мей.(Jos de Mey)
Жос де
Мей (Jos de Mey) родился в 1928 году в
Бельгии. Первые его работы были основаны на использовании различных математических законов и последовательностей, таких как ряд Фибоначчи и золотое сечение, но с 1976 года он с особой выразительностью стал использовать обман зрения, наряду с точным воспроизведением материалов и эффекта света и тени. Изображение невозможных фигур как таковых только увеличивает кажущуюся реалистичность.
Слайд 9
Невозможные структуры
Жос Де Мей.(Jos de Mey)
Часто на
картинах Жоса де Мея изображена сова.
Эта птица в Голландии
имеет двоякое значение, с одной стороны – она является символом теоретических знаний, а с другой стороны – совой голландцы называют человека, которые выглядит глупо.
Слайд 10
Невозможные фигуры возможны!
Речной вокзал в Твери. Кстати, это
место, где снимали несколько сцен фильма "Чучело". От этой
пристани в финале фильма отходит пароход.
Неправильно направленный на объект фотоаппарат сделал параллельные плоскости непараллельными
Слайд 11
Две плоскости называются параллельными, если они не пересекаются.
Плоскости
Пересекаются
Параллельны
β
α
α
|| β
α ∩ β
Слайд 12
Признак параллельности плоскостей
Если две пересекающиеся прямые одной плоскости
соответственно параллельны двум прямым другой плоскости, то эти плоскости
параллельны.
Дано:
а α; вα; а∩в=М;
а1 β; в1 β;
а║а1; в║в1
Доказать,
что α || β
α
β
а
b
М
b1
а1
М1
Слайд 13
Доказательство от противного
α
β
а
b
М
b1
а1
М1
с
а α; а1 β; а║а1а║β
в α; в1 β; в║в1в║β
Пусть α ∩
β = с
Тогда
а || β, α ∩ β = с а || с.
b || β, α ∩ β = сb || с.
а ∩ в=М; а║с; и в║са||b
Находим противоречие условию: через точку М проходят две прямые а и b, параллельные прямой с.
Предположение α ∩ β = с - неверно
Слайд 14
Какие теоремы мы использовали при доказательстве признака?
Слайд 15
Задача № 51.
(еще один признак параллельности)
Дано: т ∩
п = К, т Є α, п Є α,
т || β, п || β.
Доказать: α || β.
1) Допустим, что ___________
2) Так как __________________,
то ______________________.
Получаем, что
______________________________________________________.
Вывод:
α ∩ β = с
п || β, т || β
т || с и п || с
через точку К проходят две прямые параллельные прямой с.
α || β
Слайд 16
Задача № 53.
Дано: отрезки А1А2; В1В2; С1С2
О Є
А1А2; О Є В1В2; О Є С1С2
А1О = ОА2;
В1О = ОВ2; С1О = ОС2
Доказать: А1В1С1 || А2В2С2
А1
В1
А2
В2
С2
С1
О
Слайд 17
Задача № 53. Дано: отрезки А1А2, В1В2, С1С2
не лежат в одной плоскости и имеет общую середину
- точку О. Доказать: А1В1С1║А2В2С2.
Доказательство:
А1А2, и В1В2 лежат в одной плоскости по следствию из А1 (через две пересекающиеся прямые проходит плоскость, и притом только одна).
А1В1А2В2 - параллелограмм (диагонали четырехугольника пересекаются и в точке пересечения делятся пополам). Следовательно, А1В1║ А2В2
Аналогично А1А2, и С1С2 лежат в одной плоскости. А1С1А2С2 - параллелограмм.
Отсюда, А1С1 ║ А2С2
А1В1 ∩ А1С1 =А1; А2В2 ∩ А2С2 = А2.
По признаку параллельности плоскостей А1В1 С1║А2В2С2.
А1
В1
А2
В2
С2
С1
О
Слайд 18
Задача № 54.
Дано: ΔАDС. М, К, Р -
середины ВА, ВС, ВD соответственно. SADC = 48 см2.
Доказать:
а) МРN║ АDС. б) Найти: SMNP.
М
Р
N
А
В
D
C
Слайд 19
Отвечаем на вопросы
Могут ли прямая и плоскость не
иметь общих точек?
Верно ли, что если две прямые не
пересекаются, то они параллельны?
Плоскости и β параллельны, прямая m не лежит в плоскости . Верно ли, что прямая m параллельна плоскости β?
Верно ли, что если прямая а параллельна одной из двух параллельных плоскостей, с другой плоскостью прямая а имеет одну общую точку?
Боковые стороны трапеции параллельны плоскости . Верно ли, что плоскость трапеции параллельна плоскости ?
Две стороны трапеции лежат в параллельных плоскостях. Могут ли эти стороны быть боковыми сторонами трапеции?
Верно ли, что плоскости параллельны, если прямая, лежащая в одной плоскости, параллельна другой плоскости?
Верно ли, что линия пересечения двух плоскостей параллельна одной из этих плоскостей?
Верно ли, что любые четыре точки лежат в одной плоскости?
Верно ли, что если две стороны треугольника параллельны плоскости , то и третья сторона параллельна плоскости ?
Слайд 20
Проверяем свою работу
Могут ли прямая и плоскость не
иметь общих точек? Да
Верно ли, что если две прямые
не пересекаются, то они параллельны? Нет
Плоскости и β параллельны, прямая m не лежит в плоскости . Верно ли, что прямая m параллельна плоскости β? Да
Верно ли, что если прямая а параллельна одной из двух параллельных плоскостей, с другой плоскостью прямая а имеет одну общую точку? Нет
Боковые стороны трапеции параллельны плоскости . Верно ли, что плоскость трапеции параллельна плоскости ? Да
Две стороны трапеции лежат в параллельных плоскостях. Могут ли эти стороны быть боковыми сторонами трапеции? Нет
Верно ли, что плоскости параллельны, если прямая, лежащая в одной плоскости, параллельна другой плоскости? Нет
Верно ли, что линия пересечения двух плоскостей параллельна одной из этих плоскостей? Нет
Верно ли, что любые четыре точки лежат в одной плоскости? Нет
Верно ли, что если две стороны треугольника параллельны плоскости , то и третья сторона параллельна плоскости ? Да