- 5 заданий, в час-
ти 2 - 3 задания.
Модуль
«Геометрия» содержит 8 заданий:в части 1 - 5 заданий, в части 2 - 3 задания.
FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.
Email: Нажмите что бы посмотреть
Задача № 9. 1Задача № 9. 1, 2Задача № 9. 1, 2, 3Задача № 9. 1, 2, 3, 4Задача № 9. 1, 2, 3, 4, 5Задача № 9. 1, 2, 3, 4, 5, 6Задача № 9. 1, 2, 3, 4, 5, 6, 7
Задача № 10. 1Задача № 10. 1, 2Задача № 10. 1, 2, 3Задача № 10. 1, 2, 3, 4Задача № 10. 1, 2, 3, 4, 5Задача № 10. 1, 2, 3, 4, 5, 6Задача № 10. 1, 2, 3, 4, 5, 6, 7
Задача № 11. 1Задача № 11. 1, 2Задача № 11. 1, 2, 3Задача № 11. 1, 2, 3, 4Задача № 11. 1, 2, 3, 4, 5Задача № 11. 1, 2, 3, 4, 5, 6Задача № 11. 1, 2, 3, 4, 5, 6, 7
Задача № 12. 1Задача № 12. 1, 2Задача № 12. 1, 2, 3Задача № 12. 1, 2, 3, 4Задача № 12. 1, 2, 3, 4, 5Задача № 12. 1, 2, 3, 4, 5, 6Задача № 12. 1, 2, 3, 4, 5, 6, 7
Задача № 13. 1Задача № 13. 1, 2Задача № 13. 1, 2, 3Задача № 13. 1, 2, 3, 4Задача № 13. 1, 2, 3, 4, 5Задача № 13. 1, 2, 3, 4, 5, 6Задача № 13. 1, 2, 3, 4, 5, 6, 7
Модуль «ГЕОМЕТРИЯ» № 9 (4)
3k+7k=180
10k=180
k=18
∠1=18°∙7=126°
Модуль «ГЕОМЕТРИЯ» № 9 (6)
х+х+68=180
2х=180-68
х = 56
∠В=56°+68°=124°
∠В=∠С
Модуль «ГЕОМЕТРИЯ» № 9 (7)
H
⇒
HA = СH = 26
АВ = 2 ∙26 = 52
∠CВH=30⁰
⇒
По теореме Пифагора в ∆BCH
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов
1
2
3
∠1=∠3 как накрест лежащие при секущей ВЕ
∠3=∠2 так как ∠1=∠2 по условию
⇒
АВ=АЕ
Пусть АЕ=х,
тогда АВ=х, ЕD=3х
Р=2∙(х+4х)
⇒
2∙(х+4х)=10
5х=5
Х=1
AD=4∙1=4
Если два угла в треугольнике равны, то треугольник - равнобедренный
51
H
?
К
М
Проведем СЕ⍊AD, получим ∆ABH=∆CED и прямоугольник BCEH
⇒
AD=AH+HE+ЕD=
E
51+94=145
⇒
AH=ЕD=51,
BC=HE=HD-ED=94-51=43,
⇒
Средняя линия трапеции равна полусумме оснований трапеции
О
АО=ВО=10:2=5
В ∆АОВ, где ∠ВАО= ∠АВО=(180⁰-60⁰):2=60⁰
⇒
АВ=5
По теореме Пифагора в ∆АВD
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов
Площадь прямоугольника равна произведению соседних сторон
А
D
С
14
H
ВС=14:2=7
BC=BH=7
В
А
D
С
8
135⁰
H
К
М
⇒
По теореме Пифагора в ∆АВH, где AH=BH=х
∠АВH=135⁰-90⁰=45⁰
⇒
∠ВАH= ∠АВH=45⁰
⇒
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов
Получим прямоугольный равнобедренный треугольник
⇒
∠С=∠В=45⁰
по свойству острых углов прямоугольного треугольника
D
Получим прямоугольный равнобедренный треугольник BCD
⇒
∠С=∠В=45⁰
по свойству острых углов прямоугольного треугольника
∠ABС+∠CВD=180⁰ как смежные
⇒
∠ABС=180⁰ - ∠CВD=135⁰
Сумма смежных углов равна 180⁰
Получим прямоугольный равнобедренный треугольник
⇒
∠С=∠В=45⁰
по свойству острых углов прямоугольного тр-ка
где АВ=3, АС=4, значит по теореме Пифагора ВС=5 (Пифагоров треугольник)
В данном случае единицей измерения стала клетка.
2.Если угол равен 25⁰, то смежный с ним угол равен 155⁰
3.Через любую точку плоскости можно провести не менее одной прямой
да
нет
да
нет
да
нет
Через любые две точки проходит прямая , и притом только одна
Сумма смежных углов равна 180°
Через точку на плоскости можно провести бесконечно много прямых.
2.Существует точка плоскости, через которую можно провести бесконечное количество различных прямых.
3.Через любую точку плоскости можно провести не более двух прямых.
да
нет
да
нет
да
нет
3.Если угол равен 47⁰, то смежный с ним угол равен 133⁰.
да
нет
да
нет
да
нет
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.
Сумма смежных углов равна 180°.
2.Через любые две различные точки плоскости можно провести не менее одной прямой.
3.Если угол равен 54⁰, то вертикальный с ним угол равен 36⁰.
да
нет
да
нет
да
нет
3.Существует точка плоскости, через которую можно провести прямую.
да
нет
да
нет
да
нет
Через любую точку плоскости можно провести прямую.
2.Если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 90⁰
3.Если при пересечении двух прямых третьей соответственные углы равны, то прямые перпендикулярны.
да
нет
да
нет
да
нет
Сформулируйте свойство параллельных прямых относительно внутренних односторонних углов.
Если две параллельные прямые пересечены третьей прямой, то сума внутренних односторонних углов равна 180°
2.Если при пересечении двух прямых третьей соответственные углы равны 75⁰ и 105⁰, то прямые параллельны
3.Если при пересечении двух прямых третьей сумма внутренних односторонних углов равна 180⁰, то прямые параллельны
да
нет
да
нет
да
нет
Если при пересечении двух прямых третьей накрест лежащие углы равны, то прямые параллельны.
Если при пересечении двух прямых третьей соответственные углы равны, то прямые параллельны.
Если при пересечении двух прямых третьей сумма внутренних односторонних углов равна 180°, то прямые параллельны.