Слайд 2
«Математика владеет не только истиной, но и высокой
красотой – красотой отточенной и строгой, возвышенно чистой и
стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусства».
Бертран Рассел
Слайд 3
Тетраэдр, Гексаэдр, Октаэдр, Икосаэдр и Додекаэдр
Слайд 4
Додекаэдр имеет 12 граней, 30 ребер и 60 плоских
углов на своей поверхности. Если исходить из гипотезы, что
египтяне знали додекаэдр и его числовые характеристики 12, 30. 60, то каково же было их удивление, когда они обнаружили, что этими же числами выражаются циклы Солнечной системы, а именно, 12-летний цикл Юпитера, 30-летний цикл Сатурна и, наконец, 60-летний цикл Солнечной системы. Таким образом, между такой совершенной пространственной фигурой, как додекаэдр, и Солнечной системой, существует глубокая математическая связь! Такой вывод сделали античные ученые. Это и привело к тому, что додекаэдр был принят в качестве «главной фигуры», которая символизировала Гармонию Мироздания
Слайд 5
Золотое сечение - это универсальное проявление структурной гармонии.
Оно встречается в природе, науке, искусстве – во всем,
с чем может соприкоснуться человек.
Слайд 6
“золотое сечение” – это такое деление целого на
две такие части, при котором целое так относится к
большей части, как большая к меньшей.
A : B = B : C
Слайд 7
Решаем пропорцию A : B = B :
C
А*С=В² т.к. С=А-В, то получим А²-АВ-В²=0 .
Разделив
на В² и обозначив А:B=x мы приходим к следующему алгебраическому уравнению
х²-х-1=0
Решением является положительный корень х=(1+√5)/2 ≈ 1,618…
Отношение А:В обозначают буквой Ф = 1,62.
Ф – не зависит от длины отрезка и называется числом Фидия.
В процентном округлённом значении золотое сечение — это деление какой-либо величины в отношении 62 % и 38 %.
Слайд 8
Алгебраические свойства «золотой пропорции»
Представим уравнение золотой пропорции
х²-х-1=0
в
следующем виде: х²=х+1.
Если корень Ф (золотая пропорция) подставить вместо
х, то получим следующее замечательное тождество:
Ф²=Ф+1.
Если все члены тождества разделить на Ф, то придем к следующему выражению:
Ф=1+1/Ф или Ф-1=1/Ф.
Слайд 9
В дошедшей до нас античной литературе деление отрезка
в крайнем и среднем отношении (ἄκρος καὶ μέ- σος
λόγος) впервые встречается в «Началах» Евклида (ок. 300 лет до н. э.), где оно применяется для построения правильного пятиугольника.
Слайд 10
«Золотое сечение» лежит в основе
правильного пятиугольника (пентаграмма)
Слайд 11
Пятиконечная звезда с древних времен символ совершенства, а
в средние века ее наделяли еще магическими свойствами. Вспомните
«Фауста» Гете (в переводе Н. Холодковского):
Мефистофель:
Нет, трудновато выйти мне теперь
Тут кое-что мешает мне немного:
Волшебный знак у вашего порога.
Фауст:
Не пентаграммаль этому виной?
Но как же, бес, пробрался ты за мной?
Каким путем впросак попался?
Слайд 12
Каждый конец пятиугольной звезды представляет собой золотой треугольник.
Бесконечное
возникновение одной и той же геометрической фигуры («золотого» треугольника)
после проведения очередной биссектрисы вызывает эстетическое чувство ритма и гармонии.
Слайд 13
Золотое сечение в природе
В живой природе широко распространены
формы, основанные на «пентагональной» симметрии (морские звезды, морские ежи,
цветы). Пятилепестковыми являются цветы кувшинки, шиповника, боярышника, гвоздики, груши, черемухи, яблони, земляники и многих других цветов.
Слайд 14
Каждые восемь лет планета Венера описывает абсолютно правильный
пентакль по большому кругу небесной сферы. Древние астрономы заметили
это явление и были так потрясены, что Венера и ее пентакл стали символами совершенства, красоты. Как бы отдавая дань этому явлению, древние греки устраивали Олимпийские игры каждые восемь лет.
Слайд 15
Золотая спираль - в геометрии логорифмическая спираль, скорость роста
которой равна φ, золотой пропорции
Слайд 16
Существует несколько похожих спиралей, которые близки, но не
совпадают в точности с золотой спиралью
Слайд 18
Тема золотого сечения популярна в современном образовательном пространстве.
золотое
сечение - это один из основных основополагающих принципов природы;
во-вторых,
человеческое представление о красивом явно сформировалось под влиянием того, какой порядок и гармонию человек видит в природе.