Если две прямые перпендикулярны к плоскости, то они параллельны
Дано: α
а α; b α
Доказать: а b
Доказательство:
Через какую-нибудь точку М прямой b проведем прямую b1 а. Из 1-го свойства получили прямая b1 α. Докажем, что прямая b1 совпадает с прямой b. Тем самым будет доказано, что а b. Допустим, что b1 и b не совпадают. Тогда в плоскости β, содержащей прямые b и b1, через
a
b
b1
c
M
α
β
точку М проходят две прямые, перпендикулярные к прямой с, по которой пересекаются плоскости α и β. Но это невозможно, т.к. если b α и b1 α , то эти прямые перпендикулярны любой прямой в этой плоскости(в данном случае прямой с), но согласно теореме, через точку, не лежащую на прямой можно провести только одну прямую перпендикулярную данной, следовательно, прямая а b.
2. Если две прямые перпендикулярны плоскости, то они параллельны.