Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему по геометрии на тему Прямые и плоскости в пространстве

Содержание

Представление о плоскости дает гладкая поверхность стола или стены.С точки зрения геометрии плоскость следует представлять как простирающуюся неограниченно во все стороны.Плоскость изображается: В виде параллелограммаВ виде овала(облачка)1. Понятие плоскости.
муниципальное автономное общеобразовательное учреждение Представление о плоскости дает гладкая поверхность стола или стены.С точки зрения геометрии Через любые три точки, не лежащие на одной прямой, можно провести плоскость, Через прямую и не лежащую на ней точку проходит плоскость, и притом ааАа Прямая и плоскость называютсяпараллельными, если они не имеют общих точек.a5. Параллельность прямой и плоскости.  abαПризнак параллельности прямой и плоскости. Если плоскость проходит через данную прямую, параллельную другой плоскости, то линия пересечения Две плоскости называются параллельными, если они не пересекаются.  6. Параллельность плоскостей. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.Отрезки параллельных Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей 1 свойство:      1. Если одна 2свойство: Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, Через любую точку пространства проходит прямая, перпендикуляр-ная к данной плоскости, Расстояние, т.е. длина перпендикуляра, проведенного из точки А к плоскости α, называется Прямая, проведенная в плоскости через основание наклонной перпендикулярно к Прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной к Определение 1. Двугранным углом называется часть пространства, ограниченная двумя Определение 1. Фигура, образованная тремя лучами (ребрами), исходящими из Дано: α;   а  р; а 10. Перпендикулярность плоскостей. Две пересекающиеся плоскости называются перпендикулярными (взаимно перпендикулярными), Другое изображение перпендикулярных плоскостей: Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, Другой рисунок.     Если плоскость β проходит через прямую Следствие.   Плоскость, перпендикулярная к прямой, по которой пересекаются две данные
Слайды презентации

Слайд 2 Представление о плоскости дает гладкая поверхность стола или

Представление о плоскости дает гладкая поверхность стола или стены.С точки зрения

стены.
С точки зрения геометрии плоскость следует представлять как простирающуюся

неограниченно во все стороны.

Плоскость изображается:

В виде параллелограмма

В виде овала(облачка)

1. Понятие плоскости.


Слайд 3 Через любые три точки, не лежащие на одной

Через любые три точки, не лежащие на одной прямой, можно провести

прямой, можно провести плоскость, и притом только одну.
Если две

точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости.
Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

А

В

А

В

С

а

А


α

2. Аксиомы стереометрии.


Слайд 4 Через прямую и не лежащую на ней точку

Через прямую и не лежащую на ней точку проходит плоскость, и

проходит плоскость, и притом только одна.
Через две пересекающиеся прямые

проходит плоскость, и притом только одна.

О

а

в

а

А

3. Следствия из аксиом стереометрии.


Слайд 5 а
а
А
а

ааАа

Слайд 6
Прямая и плоскость называются
параллельными, если они не имеют

Прямая и плоскость называютсяпараллельными, если они не имеют общих точек.a5. Параллельность прямой и плоскости.

общих
точек.
a
5. Параллельность прямой и плоскости.


Слайд 7  
a
b
α



Признак параллельности прямой и плоскости.

 abαПризнак параллельности прямой и плоскости.

Слайд 8 Если плоскость проходит через данную прямую, параллельную другой

Если плоскость проходит через данную прямую, параллельную другой плоскости, то линия

плоскости, то линия пересечения плоскостей параллельна данной прямой.
Если одна

из двух параллельных прямых параллельна данной плоскости, то другая прямая либо также параллельна данной плоскости, либо лежит в этой плоскости.

a

a

b

Свойства параллельности прямой и плоскости.


Слайд 9 Две плоскости называются параллельными, если они не пересекаются.

Две плоскости называются параллельными, если они не пересекаются. 6. Параллельность плоскостей.


6. Параллельность плоскостей.


Слайд 10 Если две пересекающиеся прямые одной

Если две пересекающиеся прямые одной плоскости соответственно параллельны двум

плоскости соответственно параллельны двум прямым другой плоскости, то эти

плоскости параллельны.
Дано: α; β; a b=M; a a1;b b1; a β; b β
Доказать: β α
Доказательство:
Допустим, что плоскости α и β не параллельны. Тогда они пересекаются по некоторой прямой с. Мы получили, что плоскость α проходит через прямую а, параллельную плоскости β , и пересекает плоскость β по прямой с. Отсюда следует, что прямые а с. Но плоскость α проходит также через прямую b, параллельную плоскости β. Поэтому b c. Таким образом, через точку М проходит две прямые а и b, параллельные прямой с. Но это невозможно, т.к. по теореме о параллельных прямых через точку М проходит только одна прямая, параллельная прямой с. Значит, наше предположение неверно, => α β.

a1

b1

а

b

M



Признак параллельности плоскостей.


Слайд 11 Если две параллельные плоскости пересечены третьей, то линии

Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.Отрезки

их пересечения параллельны.
Отрезки параллельных прямых, заключенные между параллельными плоскостями,

равны.

a

b

Свойства параллельных плоскостей.


Слайд 12 Прямая называется перпендикулярной к плоскости, если она перпендикулярна

Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой,

к любой прямой, лежащей в этой плоскости.
А

7. Перпендикулярность прямой

и плоскости.

Слайд 13 1 свойство:

1 свойство:   1. Если одна из двух параллельных

1. Если одна из двух параллельных прямых перпендикулярна

к плоскости, то и другая прямая перпендикулярна к этой плоскости.

Дано: α
а а1; а α
Доказать: а1 α
Доказательство:
Проведем произвольную прямую x в плоскости α. Т.к. прямая а α, то а x = > а1 х (по лемме о перпендикулярности двух параллельных прямых к третьей) = > а1 перпендикулярна любой прямой в плоскости α. = > а1 α .

a

a1

x

Свойства
перпендикулярности прямой и плоскости.


Слайд 14 2свойство:

2свойство:

Если две прямые перпендикулярны к плоскости, то они параллельны

Дано: α
а α; b α
Доказать: а b
Доказательство:
Через какую-нибудь точку М прямой b проведем прямую b1 а. Из 1-го свойства получили прямая b1 α. Докажем, что прямая b1 совпадает с прямой b. Тем самым будет доказано, что а b. Допустим, что b1 и b не совпадают. Тогда в плоскости β, содержащей прямые b и b1, через

a

b

b1

c

M

α

β

точку М проходят две прямые, перпендикулярные к прямой с, по которой пересекаются плоскости α и β. Но это невозможно, т.к. если b α и b1 α , то эти прямые перпендикулярны любой прямой в этой плоскости(в данном случае прямой с), но согласно теореме, через точку, не лежащую на прямой можно провести только одну прямую перпендикулярную данной, следовательно, прямая а b.

2. Если две прямые перпендикулярны плоскости, то они параллельны.


Слайд 15 Если прямая перпендикулярна к двум пересекающимся

Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости,

прямым, лежащим в плоскости, то она перпендикулярна к этой

плоскости.

Доказательство:

a

b

c

Признак
перпендикулярности прямой и плоскости.


Слайд 16 Через любую точку пространства проходит прямая,

Через любую точку пространства проходит прямая, перпендикуляр-ная к данной плоскости,

перпендикуляр-ная к данной плоскости, и притом только одна.
O
A
c
Теорема о


перпендикулярности прямой и плоскости.

Слайд 17 Расстояние, т.е. длина перпендикуляра, проведенного из точки А

Расстояние, т.е. длина перпендикуляра, проведенного из точки А к плоскости α,

к плоскости α, называется расстоянием от точки А до

плоскости α.

Например, AH.

А

Н

М

Расстояние от точки до плоскости.


Слайд 18 Прямая, проведенная в плоскости через

Прямая, проведенная в плоскости через основание наклонной перпендикулярно к

основание наклонной перпендикулярно к ее проекции на эту плоскость,

перпендикулярна и к самой наклонной.
Дано: α; AH- перпендикуляр к плоскости α; АМ- наклонная; а- прямая, проведенная в плоскости α через точку М перпендикулярно к проекции НМ наклонной.
Доказать: a AM
Доказательство:
Рассмотрим плоскость АМН. Прямая а перпендикулярна к этой плоскости, т.к. она перпендикулярна к двум пересекающимся прямым АН и МН, лежащим в плоскости АМН (а НМ по условию и a АН, т.к. АН α). Отсюда следует, что прямая а перпендикулярна к любой прямой, лежащей в плоскости АМН, в частности а АМ.

А

Н

М

а

α







Теорема о трех перпендикулярах.


Слайд 19 Прямая, проведенная в плоскости через основание

Прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней,

наклонной перпендикулярно к ней, перпендикулярна к ее проекции.
А
Н
М
а
α
Обратная теорема

о трех перпендикулярах.

Слайд 20 Углом между прямой и плоскостью, пересекающей эту прямую

Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной

и не перпендикулярной к ней, называется угол между прямой

и ее проекцией на плоскость.

М

а

А

8. Угол между прямой и плоскостью.


Слайд 21 Определение 1. Двугранным углом называется

Определение 1. Двугранным углом называется часть пространства, ограниченная двумя

часть пространства, ограниченная двумя полуплоскостями, границей каждой из которых

служит их общая прямая. Двугранный угол также называют углом между данными плоскостями. Определение 2. Плоскости (полуплоскости), которые ограничивают двугранный угол, называются гранями двугранного угла. Определение 3. Линия пересечения граней двугранного угла называется ребром двугранного угла. Определение 4. Линейным углом двугранного угла называется угол, образованный двумя полупрямыми, полученными при пересечении граней двугранного угла плоскостью, перпендикулярной ребру этого двугранного угла. Значение линейного угла данного двугранного угла есть значение данного двугранного угла.

9. Двугранный угол.


Слайд 22 Определение 1. Фигура, образованная тремя

Определение 1. Фигура, образованная тремя лучами (ребрами), исходящими из

лучами (ребрами), исходящими из одной точки (вершины) и не

лежащими в одной плоскости, и тремя частями плоскостей (гранями), заключенных между этими частями, называется трехгранным углом. Определение 2. Грань трехгранного угла называется также плоским углом трехгранного угла. Определение 3. Двугранные углы, образованные гранями трехгранного угла, называются двугранными углами трехгранного угла.
Определение 4. Несколько плоскостей, пересекающихся в одной точке, разбивают пространство на части, каждая из которых может быть названа многогранным углом.

9. Трехгранный угол.


Слайд 23 Дано: α;
а

Дано: α;  а р; а q; р С

р; а q; р С α; q

C α; р ∩ q = О
Доказать: a α
Доказательство:
1).Рассмотрим случай, когда прямая а проходит через точку О.(рис.1). Через точку О проведем ℓ m. Отметим на прямой а точки А и B так, чтобы АО=ОВ, и проведем в плоскости α прямую, пересекающую прямые p, q и ℓ соответственно в точках P,Q и L .

Т.к. прямые p и ℓ - серединные перпендикуляры к отрезку АB, то AP=BP и AQ=BQ, причем PQ-общая = > ∆APQ =∆BPQ по трем сторонам. Поэтому ےAPQ =ےBPQ.
∆APL= ∆BPL (АР=BP, PL-общая, ےAPL=ےBPL) = > AL=BL = > ∆ABL - равнобедренный и его медиана LO является и высотой, т.е. ℓ а, но ℓ m = > = > m а (по лемме о перпендикулярности двух параллельных прямых к третьей) = > прямая а перпендикулярна к любой прямой в плоскости α = > a α.
2).Рассмотрим теперь случай, когда прямая а не проходит через точку О.(рис.2) Проведем через точку О прямую а1 а. По доказанному в первом случае получаем, что
а1 α, но а а1 = > а α.

Рис.1

Рис.2

1

→НАЗАД←


Слайд 24 10. Перпендикулярность плоскостей.

10. Перпендикулярность плоскостей.

Слайд 25



Две пересекающиеся плоскости

Две пересекающиеся плоскости называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен 900.

называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен

900.



Слайд 26 Другое изображение перпендикулярных

Другое изображение перпендикулярных плоскостей:

плоскостей:



Слайд 27

Если одна из двух плоскостей проходит через прямую,

Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой

перпендикулярную к другой плоскости, то такие плоскости перпендикулярны.
А
С





Признак перпендикулярности

плоскостей.

Слайд 28
Другой рисунок.
Если плоскость

Другой рисунок.   Если плоскость β проходит через прямую АВ,

β проходит через прямую АВ, перпендикулярную к плоскости α,

то β перпендикулярна α

А



  • Имя файла: prezentatsiya-po-geometrii-na-temu-pryamye-i-ploskosti-v-prostranstve.pptx
  • Количество просмотров: 85
  • Количество скачиваний: 0