Что такое findslide.org?

FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.


Для правообладателей

Обратная связь

Email: Нажмите что бы посмотреть 

Яндекс.Метрика

Презентация на тему Элементы комбинаторики

Проверь себя!Что такое комбинаторика?В чем состоит комбинаторное правило умножения?Что такое перестановки?Записать формулу для нахождения числа перестановок?Что такое факториал?Что такое размещения?Записать формулуформулу для нахождения числа размещений?Что такое сочетания?Записать формулу для нахождения числа сочетаний?В чём различие между перестановками,
ТЕМА УРОКА: «ЭЛЕМЕНТЫ КОМБИНАТОРИКИ» (ПРАКТИКУМ)Цели:Повторить основные понятия комбинаторикиСформировать умения решать различные виды комбинаторных задач Проверь себя!Что такое комбинаторика?В чем состоит комбинаторное правило умножения?Что такое перестановки?Записать формулу Подбор комбинаторных задачА№1 Восьмиклассники Анна, Борис, Виктор и Галина побежали на перемене Решение: №1 Первым в очередь мог встать любой из четырёх ребят, вторым В №1 В шахматном кружке занимаются 16 человек. Сколькими способами тренер может Ответы:В №1 а) 1820 способов;     б) 43 680 отгадай ребусы Понятие науки « Комбинаторика»Комбинаторикой называется раздел математики, в котором исследуется, сколько различных Правило   Пусть имеется n элементов и требуется выбрать один за Определение:комбинации из n-элементов, отличающихся друг от друга только порядком Определение:Размещением из n элементов по k (k Определение:Сочетанием из n элементов по k называется любое множество, составленное из k
Слайды презентации

Слайд 2 Проверь себя!
Что такое комбинаторика?
В чем состоит комбинаторное правило

Проверь себя!Что такое комбинаторика?В чем состоит комбинаторное правило умножения?Что такое перестановки?Записать

умножения?
Что такое перестановки?
Записать формулу для нахождения числа перестановок?
Что такое

факториал?
Что такое размещения?
Записать формулуформулу для нахождения числа размещений?
Что такое сочетания?
Записать формулу для нахождения числа сочетаний?
В чём различие между перестановками, размещениями и сочетаниями?

Слайд 3 Подбор комбинаторных задач
А№1 Восьмиклассники Анна, Борис, Виктор и

Подбор комбинаторных задачА№1 Восьмиклассники Анна, Борис, Виктор и Галина побежали на

Галина побежали на перемене к теннисному столу, за которым

уже шла игра. Сколькими способами подбежавшие к столу восьмиклассники могут занять очередь для игры в настольный теннис? (решение)
№2 Сколькими способами можно расставить 8 участниц финального забега на восьми беговых дорожках? (решение)
№3 Учащиеся 2 класса изучают 9 предметов. Сколькими способами можно составить расписание на один день, чтобы в нём было 4 различных предмета? (решение)
№4 Из набора, состоящего из 15 красок, надо выбрать 3 краски для окрашивания шкатулки. Сколькими способами можно сделать этот выбор? (решение)
Далее
Устал - отдохни

Слайд 4 Решение:
№1 Первым в очередь мог встать любой из

Решение: №1 Первым в очередь мог встать любой из четырёх ребят,

четырёх ребят, вторым – любой из оставшихся трёх, третьим

– любой из оставшихся двух и четвёртым - последний. По правилу произведения :4*3*2*1=24 способа.
№2 Число способов равно числу перестановок из 8 элементов : Р8=8!=1*2*3*4*5*6*7*8=40 320
№3 Любое расписание на один день, составленное из 4 различных предметов, отличается от другого либо набором предметов, либо порядком их следования. Имеем размещения из 9 по 4:


№4 Каждый набор трёх красок отличается от другого хотя бы одной краской. Имеем сочетания из 15 по 3 :.

Слайд 5 В №1 В шахматном кружке занимаются 16 человек.

В №1 В шахматном кружке занимаются 16 человек. Сколькими способами тренер

Сколькими способами тренер может выбрать из них для предстоящего

турнира : а) команду из четырёх человек; б) команду из четырёх человек, указав при этом, кто из членов команды будет играть на первой, второй, третьей и четвёртой досках?

№2 У Антона 6 друзей. Он может пригласить в гости одного или несколько из них. Определите общее число возможных вариантов.
№3 В 9 «а» классе учатся 25 учащихся, в 9 «б» - 20 учащихся, а в 9 «в» - 18 учащихся. Для работы на пришкольном участке надо выделить трёх учащихся из 9 «а», двух -из 9 «б» и одного – из 9 «в». Сколько существует способов выбора учащихся для работы на пришкольном участке?

С №1 Пять мальчиков и четыре девочки хотят сесть на девятиместную скамейку так, чтобы каждая девочка сидела между двумя мальчиками. Сколькими способами они могут это сделать?
№2 Из 12 солдат, в число которых входят Иванов и Петров, надо отправить в наряд трёх человек. Сколькими способами это можно сделать, если: а) Иванов и Петров должны пойти в наряд обязательно; б) Иванов и Петров должны остаться; в)Иванов
должен пойти в наряд, а Петров –остаться?
(Ответы)
Устал - отдохни


Слайд 6 Ответы:
В №1 а) 1820 способов;

Ответы:В №1 а) 1820 способов;   б) 43 680 способов.

б) 43 680 способов.
№2 63 способа,
указание:С61+С62+С63+С64+С65+С66.

№3 7 866 000 способов,
указание:С253*С202*С181 .
С №1 2880 способов,
указание:Р5*Р4 .
№2 а)10 способов;
б)120 способов;
в)45 способов.

Слайд 7 отгадай ребусы

отгадай ребусы

Слайд 8 Понятие науки « Комбинаторика»
Комбинаторикой называется раздел математики, в

Понятие науки « Комбинаторика»Комбинаторикой называется раздел математики, в котором исследуется, сколько

котором исследуется, сколько различных комбинаций (всевозможных объединений элементов), подчиненных

тем или иным условиям, можно составить из элементов, принадлежащих данному множеству.
Слово «комбинаторика» происходит от латинского слова combinare, которое означает «соединять, сочетать».

Слайд 9 Правило
Пусть имеется n элементов и

Правило  Пусть имеется n элементов и требуется выбрать один за

требуется выбрать один за другим некоторые k элементов. Если

первый элемент можно выбрать способами, после чего второй элемент можно выбрать из оставшихся элементов способами, затем третий элемент – способами и т.д., то число способов, которыми могут быть выбраны все k элементов, равно произведению:

Слайд 10 Определение:
комбинации из n-элементов, отличающихся друг от друга только

Определение:комбинации из n-элементов, отличающихся друг от друга только порядком

порядком расположения в них элементов, называются перестановками из n

элементов.
Перестановки из n элементов обозначают Pn и вычисляют по формуле: Pn=n!
n!=1*2*3*4*…*n (n факториал)
Свойство: 0!=1
Задача: Сколькими способами могут разместиться 5 пассажиров в пятиместной каюте?
Решение: P5=5!=1*2*3*4*5=120

Слайд 11 Определение:
Размещением из n элементов по k (k

Определение:Размещением из n элементов по k (k

называется любое множество, состоящее из k элементов, взятых в

определённом порядке из данных n элементов.
Число размещений из n элементов по k обозначаются (читается: «А из n по k»)

Слайд 13 Определение:
Сочетанием из n элементов по k называется любое

Определение:Сочетанием из n элементов по k называется любое множество, составленное из

множество, составленное из k элементов, выбранных из данных n

элементов (не имеет значения, в каком порядке указаны элементы).
Число сочетаний из n элементов по k обозначают (читается: «С из n по k»).

  • Имя файла: elementy-kombinatoriki.pptx
  • Количество просмотров: 182
  • Количество скачиваний: 0