требует углубленных знаний не только в алгебре, но и
геометрии.Цель: Рассмотреть теоретические аспекты педального треугольника, точки Брокара и их практическое применение.
FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.
Email: Нажмите что бы посмотреть
Решение.
I способ
Пусть BCF – равнобедренный треугольник с основанием BF. Проведем высоту CH. Тогда BH=HF и BF=2BH=36. Следовательно, FH=BH=18. Тогда по свойству касательных, проведенных к окружности из одной точки, AB=BH=HF=FP=18. Поскольку СН – ось симметрии треугольника ВСF, то центр вписанной окружности лежит на СН, а AB=FP. Следовательно, точки А и Р симметричны относительно прямой СН и поэтому АР||BF. Значит, треугольники АСР и BCF подобны. Отсюда следует, что треугольник АСР равнобедренный и АС=АР. Пусть АС=х. Из подобия треугольников ACP и BCF следует
значит, х=9. Поэтому, ВС=СР=х+18=27. Следовательно, искомый периметр треугольника BCF равен BF+2BC=36+54=90.
Отсюда получаем