FindSlide.org - это сайт презентаций, докладов, шаблонов в формате PowerPoint.
Email: Нажмите что бы посмотреть
Упражнение 3
Даны две точки O1 и O2. Найдите ГМТ X, для которых XO1 R1 и XO2 R2. Пересечением каких фигур является искомое ГМТ.
Ответ: Искомое ГМТ является объединением двух кругов с центрами в точках O1, O2 и радиусами R1, R2.
Даны две точки O1 и O2. Найдите ГМТ X, для которых XO1 R1 и XO2 R2. Разностью каких фигур является искомое ГМТ.
Доказательство. Пусть дан отрезок АВ и точка О – его середина. Очевидно, точка О одинаково удалена от точек А, В и принадлежит серединному перпендикуляру. Пусть точка С одинаково удалена от точек А и В и не совпадает с точкой О.
Обратно, пусть точка С принадлежит серединному перпендикуляру и не совпадает с О, тогда прямоугольные треугольники АОС и ВОС равны (по катетам). Следовательно, АС=ВС.
Тогда треугольник АВС равнобедренный и СО – медиана. По свойству равнобедренного треугольника медиана является также и высотой. Значит, точка С принадлежит серединному перпендикуляру.
Ответ: Искомое ГМТ является пересечением двух полупространств, определяемых серединными перпендикулярами к отрезкам AB и BC.
Ответ: Искомое ГМТ является объединением двух полупространств, определяемых серединными перпендикулярами к отрезкам AB и BC.
Пусть a и b - пересекающиеся прямые. Найдите геометрическое место точек: а) одинаково удаленных от a и b; б) расположенных ближе к a, чем к b.